Malaysian Journal of Analytical Sciences (MJAS)

CORROSION INHIBITION STUDY ON GLYCEROL AS SIMULTANEOUS GAS HYDRATE AND CORROSION INHIBITOR IN GAS PIPELINES

(Kajian Perencatan Kakisan oleh Gliserol sebagai Perencat Serentak untuk Hidrat Gas dan Kakisan dalam Saluran Paip Gas)

Vinayagam Sivabalan^{1,2}, Belkhir Walid^{1,3}, Yoann Madec^{1,4}, Ali Qasim^{1,2}, Bhajan Lal^{1,2}*

¹Chemical Engineering Department,

²CO₂ Research Centre (CO₂RES),

Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia

³Department of Science and Engineering of Materials,

University Institute of Technology, 71100 Chalon-sur-Saône, France

⁴Department of Process Engineering,

National Superior Engineering School of Industrial Technologies (ENGSTI), 64000 Pau, France

*Corresponding author: bhajan.lal@utp.edu.my

Received: 20 November 2019; Accepted: 23 January 2020

Abstract

Gas hydrate inhibitors (GHI) and Corrosion Inhibitors (CI) often tend to display antagonistic behaviour in flow assurance of oil and gas. Compatible GHI and CI that have no compromises are still under research and development. Latest researches are being done on multifunctional gas hydrate and corrosion inhibitor (GHCI). Glycerol has been tested for its inhibition performance for both hydrate and corrosion in various distinguished experiments. However, glycerol's corrosion inhibition on X52 mild steel in seawater environment has never been tested. In this work, the corrosion inhibitor property of glycerol on X52 mild steel in 3.5wt.% NaCl brine solution is investigated. The concentrations of glycerol used are 400, 600, 800, 1000, 5000, and 10000 ppm. The pH and conductivity of glycerol have been measured and the relationship between pH, conductivity and corrosion has been thoroughly discussed. The performance of glycerol has been studied further based on adsorption isotherms such as Langmuir, Frumkin, Temkin and Freundlich isotherm. The Temkin isotherm shows the best fit for adsorption isotherm with R² of 0.97.

Keywords: hydrate, corrosion, pH, conductivity, adsorption

Abstrak

Perencat hidrat gas (GHI) dan perencat kakisan (CI) sering menunjukkan kecenderungan antagonistik dalam penjaminan aliran minyak dan gas. GHI dan CI yang tidak mempunyai kompromi ialah masih dalam penyelidikan dan pembangunan. Penyelidikan terkini dilakukan pada perencat multifungsi (GHCI) yang boleh merencat hidrat dan kakisan. Gliserol telah diuji untuk prestasi perencatannya untuk hidrat dan kakisan dalam pelbagai eksperimen yang berbeza. Bagaimanapun, perencatan kakisan gliserol pada keluli lembut X52 dalam persekitaran air laut tidak pernah diuji. Dalam penyiasatan ini, sifat perencat kakisan gliserol pada keluli lembut X52 dalam larutan garam NaCl 3.5wt.% disiasat. Kepekatan gliserol yang digunakan ialah 400, 600, 800, 1000, 5000, dan 10000 ppm. Nilai pH dan konduktiviti gliserol telah diukur dan hubungan antara pH, konduktiviti dan kakisan telah dibincangkan dengan teliti. Prestasi gliserol telah dikaji lebih lanjut berdasarkan model isoterma penjerapan seperti model Langmuir, Frumkin, Temkin dan Freundlich. Model Temkin didapati paling sesuai untuk isoterma penjerapan dengan R², 0.97.

Kata kunci: hidrat, kakisan, pH, konduktiviti, penjerapan

Introduction

In the oil and gas industry, the term 'flow assurance' refers to the provision of the safe and economical delivery of hydrocarbon stream from the reservoir to the selling point through process facilities [1]. Flow assurance issues mainly involve the formation of hydrates, corrosion, asphaltenes, slugging, and emulsions [2]. Formation of gas hydrates and corrosion in pipelines are significant challenges in flow assurance [3-7]. These issues cause a considerable impact to the production in terms of the cost involved, the engineering effort and maintenance that have to be invested [8, 9]. To overcome these issues that lead to severe safety and economic losses, the industry is injecting different types of gas hydrate inhibitors (GHI) and corrosion inhibitors (CI). However, GHI and CI often tend to display antagonistic behaviour.

Along with the studies on hydrate inhibitors [10-13], and corrosion inhibitors [8, 14, 15], the researches on environmentally friendly dual functioning gas hydrate and corrosion inhibitor are ongoing as the presence of one hydrate inhibitor causes a negative impact on the corrosion inhibitor's performance and vice versa [16-19]. The understanding of the gas hydrate and corrosion phenomena is required to solve this incompatibility issue. While hydrate is an ice-like structure formed when water molecules entrap light gas molecules under high pressure and temperature, corrosion is the destructive chemical attack upon a metallic structure by its environment. Corrosion is a common electrochemical phenomenon experienced in oil and gas production [7, 20-22]. As the hydrate and corrosion inhibitors show antagonistic behaviour, it is well known that the hydrate inhibitors used in pipeline result in corrosion most of the time. Researchers have been working for decades to find a chemical that can inhibit both hydrate and corrosion in the oil and gas pipelines. Burgazli et al. [23] claimed that the corrosion inhibiting property of some gas hydrate inhibitors is an overlooked benefit to be looked upon [23, 24]. The purpose of this research is to find the dual functioning chemicals that can inhibit both hydrate and corrosion in oil and gas pipelines. In this work, glycerol showing good hydrate [25-28], and corrosion [29-31] inhibiting property in different conditions, is tested for its corrosion inhibition effect on Mild Steel X52 in 3.5wt.% sodium chloride (NaCl) solution.

Materials and Methods

Materials

Glycerol with 99.5% purity was purchased from MERCK (CAS 56-81-5) for this experiment. The 3.5wt.% NaCl brine solution, which is the corrosive medium for the corrosion study was prepared by using deionised water and reagent grade NaCl. Mild steel X52 samples with the dimensions of 10x10x5 mm have been used as the metal specimens. The composition of mild steel X52 is obtained from previous literature [32]. The metal specimen is abraded up to 800 grit, to eliminate the surface impurities. Mild steel X52 is then washed using distilled water, rinsed with Acetone to degrease, and dried. These metal samples are used for the weight loss method in the control solution of 3.5wt.% of NaCl, and the different concentrations of glycerol in the solution.

Evaluation of pH and electrical conductivity

Both pH and electrical conductivity meter are calibrated according to the user manual. SCHOTT Lab 860 probe has been used for the pH measurement. This equipment, which is used to measure the acidity or basicity of solutions has an electrode attached to the meter, and the corresponding reading can be taken from the screen. Meanwhile, for electrical conductivity, SCHOTT Lab 960 is used. This equipment has a probe with a 4-pole cell made of graphite, which enables quick and reliable conductivity measurement with an accuracy of $\pm 0.5\%$ using alternating current. The tests are done at room temperature, 298.15K. The temperature is essential for the reproducibility of the conductivity measurement. The probes are immersed directly into the beakers that contain the prepared solutions, and the results appearing on the screen are recorded once they are stabilised. The measurements are repeated to confirm reproducibility.

Weight loss method

The metal samples are accurately weighed with Mettler Toledo electronic digital weighing balance which has a sensitivity of 0.01mg and a standard deviation of ± 0.02 mg. The weighed samples are dried before being inserted into the corrosive medium. The samples are submerged into the corrosive medium, and the beakers are covered with paraffin film to ensure the solution is not exposed to foreign compounds. After the 30 days of immersion, the metal specimen was removed, washed, dried and weighed again to obtain the final mass. The corrosion rate was calculated using Equation 1.

$$CR = 8.76 * 10^4 \left(\frac{m_F - m_o}{A\rho t}\right) * 100\%$$
 (1)

where m_F is the final mass of the metal, m_0 is the initial mass of the metal; A is the exposed surface area of metal, ρ is the density of the metal and t is the immersion period. Meanwhile, the degree of surface coverage (θ) and inhibition efficiency (η %) can be determined using equations (2) and (3).

$$\theta = \frac{cr_1 - cr_0}{cr_1} \tag{2}$$

$$\eta \% = \theta * 100\% \tag{3}$$

where, Cr means corrosion rate (mm/year), θ stands for degree of surface coverage, η % means the inhibition efficiency while Cr₀ and Cr₁ mean Corrosion rate (cm/hr) without and with inhibitor.

Adsorption isotherm

Physical adsorption and chemisorption processes are the two main types of interaction in the adsorption of organic compounds onto solid surfaces. The processes are influenced by the nature and charge of the metal, the chemical structure of the inhibitor and the type of electrolyte. The experimental θ values were fitted to standard isotherms including that of Langmuir, Frumkin, Freundlich and Temkin. The value of correlation coefficient (R²) was used to choose the best-fitting isotherm equation. The adsorption isotherm equations are shown below:

Langmuir isotherm:
$$KC = \frac{\theta}{1-\theta}$$
 (4)

Freundlich isotherm:
$$\theta = KC^a$$
 (5)

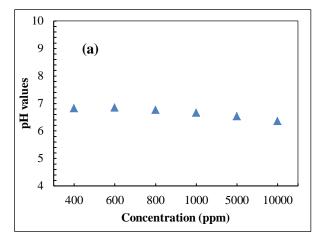
Temkin isotherm:
$$KC = e^{a\theta}$$
 (6)

Frumkin isotherm:
$$KC = \frac{\theta}{1-\theta} * e^{-2a\theta}$$
 (7)

K is the equilibrium constant of the inhibitor adsorption process, a is the parameter of interaction between inhibitor molecules adsorbed on the steel surface, and θ is the degree of surface coverage which can be calculated using equation (3).

The Langmuir adsorption model describes adsorption capacity for the coverage of surface sites by a monolayer quantitatively. The Langmuir isotherm is valid for monolayer adsorption onto a surface containing a finite number of identical sites. The model assumes uniform energies of adsorption onto the surface and no transmigration of adsorbate in the plane of the surface. Langmuir isotherm is applied to a perfectly uniform surface, and when there is no interaction between the adsorbed molecules. The Freundlich adsorption model is used in the case of the possible formation of more than one adsorption monolayer on the surface and the sites are heterogeneous. Frumkin isotherm considers the interaction between the adsorbed species, where 1 in the equation (7) represents the number of water molecules displaced by one surfactant molecule as previously described.

Results and Discussion


Values of pH and electrical conductivity

The pH and electrical conductivity values are measured at 298.15 K. The results are tabulated in Table 1. It is observed that there is an increment in electrical conductivity and decrement in pH values with the increase of concentration. Compared to pure water, Glycerol increased electrical conductivity significantly. The increase of electrical conductivity is due to the presence of more soluble ions in the water phase that increased the mobility of ion species. The literature review shows a similar trend [33]. For pH measurements, the decrement can be attributed to the fact that glycerol in water is a weak acid with a pKa value of 14.15 [34]. Though glycerol has three OH- ions in its structure, the -OH groups do not separate as an ion, making it not a base. This slightly acidic nature improves

the adsorption of Glycerol onto the mild steel X52. Both the pH and conductivity values are presented graphically in Figure 1.

Table 1.	pH and	electrical	conductivity	values of ac	queous Gly	cerol at 298.15 K
----------	--------	------------	--------------	--------------	------------	-------------------

Sample Concentration (ppm)	pН	Conductivity (mS/cm)
Deionised water	6.98	0.055
400	6.82	0.7944
600	6.84	0.8753
800	6.76	0.9933
1000	6.66	0.9802
5000	6.53	1.034
10000	6.35	1.235

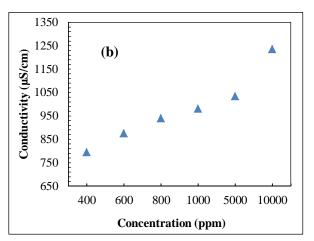


Figure 1. Results of (a) pH and (b) conductivity measurement of glycerol

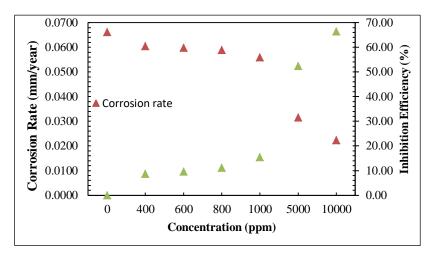
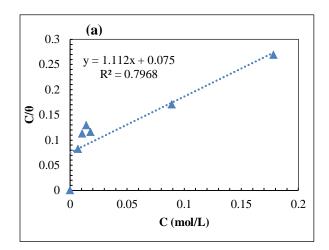
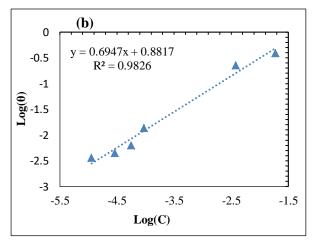
Weight loss method

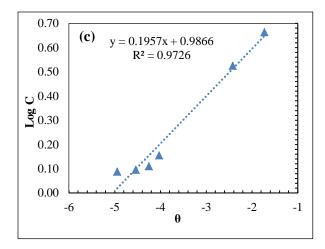
Based on the results from the weight-loss method, the corrosion rate and the corrosion inhibition efficiency are calculated. Table 2 tabulates the data of corrosion rate of Mild Steel X52 in the absence and presence of glycerol.

Table 2. Corrosion rate of sample and the corrosion inhibition efficiency of glycerol

Concentration (ppm)	Initial weight (g)	Final Weight (g)	Weight Loss (g)	Corrosion Rate (mm/year)	Inhibition Efficiency, %
Blank	3.6575	3.6416	0.0159	0.0661	0.00
400	3.6274	3.6130	0.0144	0.0604	8.68
600	3.7879	3.7730	0.0149	0.0598	9.52
800	3.7495	3.7350	0.0145	0.0588	11.04
1000	3.5634	3.5503	0.0131	0.0559	15.43
5000	3.9145	3.9064	0.0081	0.0315	52.40
10000	3.7612	3.7557	0.0055	0.0222	66.36

In the absence of glycerol, the corrosion rate of Mild steel X52 in 3.5wt.% NaCl is approximately 0.06mm/year. Addition of glycerol significantly reduces the corrosion rate and the inhibition efficiency increases with increasing concentration. From the addition of 400 ppm to 1000 ppm of glycerol to the corrosive medium, the corrosion rate reduces gradually. However, after adding 5000 ppm, there is a considerable leap in the corrosion inhibition efficiency. The increment of the inhibition efficiency might be due to the presence of optimum concentration glycerol at 5000 ppm, which is equivalent to 5wt.% the standard amount of chemical injection gas hydrate mitigation. Figure 2 clearly illustrates the effect of concentration of glycerol on the corrosion rate of the mild steel and the inhibition efficiency.


Figure 2. Effect of concentration (ppm) of corrosion rate(mm/year) and inhibition efficiency (%)

Adsorption isotherm

From the details obtained through the weight-loss method, adsorption isotherms are applied to the experimental data for further understanding of the corrosion inhibition mechanism of Glycerol. Figure 3 shows the adsorption isotherms compared with the experimental data.

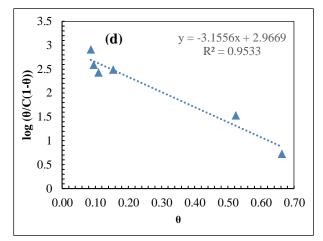


Figure 3. Adsorption isotherms fitted to experiment (a) Langmuir (b) Freundlich (c) Temkin and (d) Frumkin

All the adsorption isotherms give almost straight line to the experimental data. Based on the regression value, Freundlich Isotherm gives the best fit with R^2 equivalent to 0.97. The Freundlich isotherm equation (5) is modified to equation (8) as below to have the linear line.

$$\log \theta = \alpha \log C + \log K \tag{8}$$

From the graph plotted, it is found that the K and α values are 2.41 and 0.6947 respectively. Value of α is a measure of adsorption intensity or surface heterogeneity. If the value of α approaches zero, then it means that there is more surface heterogeneity. A value of α below unity implies chemisorption whereas α above one is an indication of cooperative adsorption[35]. The low values of K suggest that interaction between adsorbed molecules and the metal surface is not strong, indicating that the inhibitor molecules can be removed from the metal surface by any solvent molecules. Based on our results, a strong adsorption bond of chemisorptive nature could be implicated.

Conclusion

From this study, it can be concluded that glycerol has the potential to be a dual functioning gas hydrate and corrosion inhibitor. Glycerol is a common thermodynamic gas hydrate inhibitor in the oil and gas industry, and through this study, it has also been proven that glycerol has 66% corrosion inhibition efficiency at 10000 ppm (1wt%). The inhibition efficiency of glycerol shows the trend of proportionally increasing with the concentration. Although the glycerol has slightly acidic nature, the acidic nature enhances the adsorption process instead of promoting corrosion. Further researches with higher concentrations of glycerol should be done to validate the corrosion inhibition efficiency at higher concentrations of glycerol in 3.5 wt.% NaCl solution. Being an eco-friendly and cost-friendly chemical that has no adverse effect on the environment, glycerol holds vast potential towards greener application flow assurance in the oil and gas industry. It is recommended in subsequence study, influential factors of treatment temperature, CO₂ corrosion (in the absence of O₂ environment to better represent gas pipeline flowing conditions) and high-temperature high autoclave corrosion rate should be considered.

Acknowledgement

The authors would like to acknowledge YUTP Grant 015LCO-154 for supporting this work. Besides, the authors would like to thank everyone who contributed to the success of the Internship Project collaboration between IUT Chalon and ENGSTI, France, and Universiti Teknologi Petronas, Malaysia.

References

- 1. Sloan, Dendy; Koh, Carolyn; K.Sum, Amadeu; L.Ballard, Adam; Creek, Jefferson; Eaton, Michael; Lachance, Jason; McMullen, Norm; Palermo, Thierry; Shoup, George; Talley, L., Sloan, D., Koh, C., Sum, A., Windows, M., Corporation, M. and Sakajiri, A. (2011). Natural gas hydrates in flow assurance. In Elsevier Publisher.
- 2. Theyab, M. A. (2018). Fluid flow assurance issues: Literature review. SciFed Journal of Petroleum, 2(1), 1-11.
- 3. Khan, M. S., Lal, B., Keong, L. K. and Sabil, K. M. (2018). Experimental evaluation and thermodynamic modelling of AILs alkyl chain elongation on methane riched gas hydrate system. *Fluid Phase Equilibria*, 473: 300-309.
- 4. Yaqub, S., Lal, B., Shariff, A. M., and Mellon, N. (2019). Unraveling the effect of sub-cooling temperatures on the kinetic performance of biopolymers for methane hydrate. *Journal of Natural Gas Science and Engineering*, 65(1): 68-81.
- 5. Qasim, A., Khan, M. S., Lal, B. and Shariff, A. M. (2019). Phase equilibrium measurement and modeling approach to quaternary ammonium salts with and without monoethylene glycol for carbon dioxide hydrates. *Journal of Molecular Liquids*, 282: 106-114.
- Nashed, O., Dadebayev, D., Khan, M. S., Bavoh, C. B., Lal, B. and Shariff, A. M. (2018). Experimental and modelling studies on thermodynamic methane hydrate inhibition in the presence of ionic liquids. *Journal of Molecular Liquids*, 249(11): 886-891.
- 7. Asrar, N., MacKay, B., Birketveit, Ø., Stopanicev, M., Jackson, J. E., Jenkins, A. ad Vittonato, J. (2016). Corrosion- the longest war. *Oilfield Review*, 28(2): 34-49.
- 8. Yahya, S., Othman, N. K. and Ismail, M. C. (2019). Corrosion inhibition of steel in multiple flow loop under 3.5% NaCl in the presence of rice straw extracts, lignin and ethylene glycol. *Engineering Failure Analysis*, 100: 365-380.
- 9. Khan, M. S., Mellon, N. B. and Lal, B. (n.d.). Preliminary experimental evaluation for methane (CH₄) and carbon dioxide (CO₂) gas hydrate mitigation.
- 10. Nashed, O., Sabil, K. M., Ismail, L., Japper-Jaafar, A. and Lal, B. (2018). Mean induction time and isothermal kinetic analysis of methane hydrate formation in water and imidazolium based ionic liquid solutions. *The Journal of Chemical Thermodynamics*, 117: 147-154.
- 11. Bavoh, C. B., Lal, B., Osei, H., Sabil, K. M. and Mukhtar, H. (2019). A review on the role of amino acids in gas hydrate inhibition, CO₂ capture and sequestration, and natural gas storage. *Journal of Natural Gas Science and Engineering*, 64(1): 52-71.
- 12. Bavoh, C. B., Lal, B., Nashed, O., Khan, M. S., Lau, K. K. and Bustam, M. A. (2016). COSMO-RS: An ionic liquid prescreening tool for gas hydrate mitigation. *Chinese Journal of Chemical Engineering*, 24(11): 1619-1624.
- 13. Khan, M. S., Bavoh, C. B., Partoon, B., Lal, B., Bustam, M. A. and Shariff, A. M. (2017). Thermodynamic effect of ammonium based ionic liquids on CO₂ hydrates phase boundary. *Journal of Molecular Liquids*, 238(7): 533-539.
- 14. Nam, N. D., Hien, P. Van, Hoai, N. T. and Thu, V. T. H. (2018). A study on the mixed corrosion inhibitor with a dominant cathodic inhibitor for mild steel in aqueous chloride solution. *Journal of the Taiwan Institute of Chemical Engineers*, 91: 556-569.
- 15. Vu, N., Hien, P., Man, T., Hanh Thu, V., Tri, M. and Nam, N. (2017). A study on corrosion inhibitor for mild steel in ethanol fuel blend. *Materials*, 11(1): 59.
- 16. Menendez, C. M., Jardine, J., Mok, W. Y., Ramachandran, S., Jovancicevic, V., & Bhattacharya, A. (2014). New sour gas corrosion inhibitor compatible with kinetic hydrate inhibitor. *International Petroleum Technology Conference*, pp. 1-9.
- 17. Obanijesu, E. O., Gubner, R., Barifcani, A., Pareek, V. and Tade, M. O. (2014). The influence of corrosion inhibitors on hydrate formation temperature along the subsea natural gas pipelines. *Journal of Petroleum Science and Engineering*, 120: 239-252.
- 18. Sheng, Q., Silveira, K. C. Da, Tian, W., Fong, C., Maeda, N., Gubner, R. and Wood, C. D. (2017). Simultaneous hydrate and corrosion inhibition with modified poly(vinyl caprolactam) polymers. *Energy and Fuels*, 31(7): 6724-6731.
- 19. Moloney, J. J., Mok, W. Y. and Gamble, C. G. (2009). Compatible corrosion and kinetic hydrate inhibitors for wet sour gas transmission lines. *NACE International: Corrosion* 2009: pp. 09350.

Sivabalan et al: CORROSION INHIBITION STUDY ON GLYCEROL AS SIMULTANEOUS GAS HYDRATE AND CORROSION INHIBITOR IN GAS PIPELINES

- 20. Schütze, M. (2002). Corrosion books: Handbook of corrosion engineering. By Pierre R. Roberge Materials and Corrosion 4/2002. *Materials and Corrosion*, 53(4): 284-284.
- 21. Dariva, G. C. and Galio, F. A. (2014). Corrosion inhibitors principles, mechanisms and applications. In *Developments in Corrosion Protection*, 2014: pp. 365-379.
- 22. Macdonald, D. D., Lewis, M., McLafferty, J., Maya-Visuet, E. and Peek, R. (2018). Electromagnetic induction corrosion control technology (EICCT). *Materials and Corrosion*, 69(4): 436-446.
- 23. Burgazli, C. R., Navarrete, R. C. and Mead, S. L. (2005). New dual purpose chemistry for gas hydrate and corrosion inhibition. *Journal of Canadian Petroleum Technology*, 44(11): 47-50.
- 24. Leinweber, D. and Feustel, M. (2009). Patent No. US007615102B2. United States.
- 25. Chapoy, A., Burgass, R. and Tohidi, B. (2014). Hydrate inhibition in propylene glycol and glycerol systems. In 8th International Conference on Gas Hydrates, pp. 1-8.
- Wu, H.-J. and Englezos, P. (2006). Inhibiting effect of triethylene glycol and glycerol on gas hydrate formation conditions. *Journal of Chemical & Engineering Data*, 51(5): 1811-1813.
- 27. Li, X.-S., Wu, H.-J. and Englezos, P. (2006). Prediction of gas hydrate formation conditions in the presence of methanol, glycerol, ethylene glycol, and triethylene glycol with the statistical associating fluid theory equation of state. *Industrial & Engineering Chemistry Research*, 45(6): 2131-2137.
- 28. Bavoh, C. B., Khan, M. S., Ting, V. J., Lal, B., Ofei, T. N., Ben-Awuah, J. and Shariff, A. B. M. (2018). The effect of acidic gases and thermodynamic inhibitors on the hydrates phase boundary of synthetic Malaysia natural gas. *IOP Conference Series: Materials Science and Engineering*, 458(1): 012016.
- 29. Chi-Ucán, S. L., Castillo-Atoche, A., Castro Borges, P., Manzanilla-Cano, J. A., González-García, G., Patiño, R. and Díaz-Ballote, L. (2014). Inhibition effect of glycerol on the corrosion of copper in NaCl solutions at different pH values. *Journal of Chemistry*, 2014: 1-10.
- 30. Zubaidi, I. Al, Ibrahim, H., Jones, R., Alzughaibi, M., Albayyadhi, M. and Darzi, F. (2016). Waste glycerol as new green inhibition for metal corrosion in acid medium. *Proceedings of the 3rd International Conference of Fluid Flow, Heat and Mass Transfer*, (162): 1-8.
- 31. Corrales-Luna, M., Le Manh, T., Romero-Romo, M., Palomar-Pardavé, M. and Arce-Estrada, E. M. (2019). 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H₂SO₄ and HCl media. *Corrosion Science*, 2019: 85-99.
- 32. Nashed, O., Koh, J. C. H. and Lal, B. (2016). Physical-chemical properties of aqueous TBAOH solution for gas hydrates promotion. *Procedia Engineering*, 148: 1351-1356.
- 33. Bhattacharyya, L. and Rohrer, J. S. (Eds.). (2012). Applications of ion chromatography for pharmaceutical and biological products. John Wiley and Son Publisher.
- 34. Zhu, Y., Free, M. L., Woollam, R. and Durnie, W. (2017). A review of surfactants as corrosion inhibitors and associated modeling. *Progress in Materials Science*, 90: 159-223.