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Abstract 

Magnetic nanoparticles are highly valuable solid support for the attachment of homogeneous inorganic catalyst and 

organocatalyst. In this study, surfactant-bound Fe3O4 nanoparticles were successfully synthesized via a co-precipitation method 

between FeCl3.6H2O and FeCl2.4H2O, in which sodium dodecyl sulfate (SDS) was applied as a stabilizing agent. The use of 

surfactant was also to avoid the agglomeration process during the catalytic activity. Different techniques were employed to 

characterize the synthesized magnetic nanoparticles, such as Fourier Transform Infrared Spectroscopy (FTIR), 

Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy/Electron 

Dispersive X-ray (FESEM/EDX), Vibrating Sample Magnetometer (VSM), and Brunauer–Emmett–Teller (BET) Surface Area 

Analysis. The specific surface area analysis of surfactant-bound Fe3O4 nanoparticles gave a higher value (117 m2/g) with large 

pore volume (0.40 cm3/g) compared to bare iron oxide. The VSM pattern demonstrates superparamagnetic properties of 

magnetic nanoparticles with saturation magnetization Ms, 53.98 emu/g. The analyses obtained recommended the surfactant-

bound Fe3O4 nanoparticles potentially to be used as solid support for catalytic applications due to their unique properties, for 

example high surface area, superparamagnetism, and well-dispersed material. 

 

Keywords:  magnetite nanoparticles, catalyst support, heterogeneous catalysis 

 

Abstrak 

Nanopartikel magnet merupakan penyokong padu yang berharga untuk pengikatan mangkin homogen tak organik dan mangkin 

homogen organo. Dalam kajian ini, nanopartikel Fe3O4 surfaktan terikat berjaya disintesis melalui kaedah pemendakan bersama 

antara FeCl3.6H2O dan FeCl2.4H2O, yang menggunakan natrium dodesil sulfat sebagai agen penstabilan. Penggunaan surfaktan 

juga untuk mengelak proses aglomerasi semasa aktiviti pemangkinan. Pelbagai teknik digunakan untuk pencirian nanopartikel 

magnet yang disintesis seperti Spektroskopi Inframerah Penjelmaan Fourier (FTIR), Analisis Gravimetri Terma (TGA), 

Pembelauan Sinar-X (XRD), Mikroskopi Elektron Pengimbasan Pancaran Medan/Sinar-X Sebaran Elektron (FESEM), 

Magnetometer Sampel Bergetar (VSM), dan Analisis Luas Permukaan Brunauer–Emmett–Teller(BET). Analisis luas permukaan 

khusus bagi nanopartikel Fe3O4 surfaktan terikat memberikan suatu nilai yang tinggi (117 m2/g) dengan isi padu liang besar (0.40 

cm3/g) berbanding dengan oksida besi tanpa surfaktan. Pola VSM mempamerkan sifat superparamegnetik bagi nanopartikel 

magnetik dengan nilai pemagnetan tepu Ms, 53.98 emu/g. Analisis yang diperolehi mengesyorkan bahawa nanopartikel Fe3O4 

surfaktan terikat berpotensi digunakan sebagai penyokong padu untuk aplikasi pemangkinan disebabkan oleh sifat-sifat uniknya 

seperti luas permukaan yang tinggi, superparamagnet dan sebagai bahan terserak yang baik. 
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Introduction 

The use of magnetic nanoparticles as solid support materials is considered as a bridge between homogeneous and 

heterogeneous catalysts. Today, the development of iron oxide (Fe3O4) nanoparticles has led to the dramatic 

expansion of their applications by enabling environmentally-friendly and sustainable catalytic processes [1]. Having 

unique properties such as superparamagnetism, high surface area, low toxicity and economical, Fe3O4 nanoparticles 

possess numerous benefits for isolation and separation from desired mixtures using an external magnet [2,3]. 

Consequently, Fe3O4 nanoparticles are widely employed as solid support materials for homogeneous catalysts in the 

cross-coupling reactions [4]. 

 

Previous works reported that the synthesized Fe3O4 nanoparticles contributed to the spontaneous agglomeration in 

the catalytic system, which later became a critical problem [5]. Iron oxides have bare surface potential to 

agglomerate due to van der Waals forces, high energy surface, and strong magnetic attraction among particles [6,7]. 

The agglomeration of the nanoparticles may reduce the total exposed surface area of the catalyst as well as affect its 

magnetic properties [8,9]. Therefore, a modification for protection strategies has been made as a prerequisite to 

synthesise stable and effective catalyst support materials [5]. Hence, stabilizers such as surfactant were employed at 

the time of preparation. By coating and protecting the surface of Fe3O4 nanoparticles, the agglomeration and 

aggregation of the solid support materials could be reduced, and particle size could also be controlled in order to 

achieve compatibility and stability [10,11]. 

 

This study reported the synthesis and physicochemical properties of surfactant-bound Fe3O4 nanoparticles 

potentially used as solid support materials for homogeneous catalyst. The synthesized catalyst support was 

spectroscopically characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), 

Thermogravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FESEM), Vibrating Sample 

Magnetometer (VSM),and Brunauer–Emmett–Teller (BET) Surface Area Analysis. 

 

Materials and Methods 

Chemicals and reagents  

Iron(III) chloride hexahydrate, iron(II) chloride tetrahydrate, and sodium dodecyl sulphate were purchased from 

Sigma Aldrich, USA. Aqueous ammonia and absolute ethanol were supplied from MERCK Chemical Co. All 

chemicals were used as received without any purification or any special precaution during the experimental 

procedure. 

 

Characterization 

The synthesized surfactant-bound Fe3O4 nanoparticles were successfully characterized using several spectroscopic 

and analytical techniques. The infrared spectrum of sample was collected on a Perkin Elmer 100 Fourier Transform 

Infrared Spectroscopy in the range of 4000-400 cm
-1

 by using potassium bromide (KBr) pellets. The thermal 

properties were investigated using Perkin Elmer TGA Analyser (Perkin Elmer Pyris 6 TGA) from 30 °C to 900 °C 

at the heating rate of 10 °C/min under nitrogen atmosphere. The XRD pattern was recorded on a Rigaku Miniflex II 

X-ray diffractometer with an X-ray of the Cu Kα radiation filtered by a Ni filter and had a wavelength of γ = 1.54. 

An estimation of particle size was performed using Scherrer equation: 

 

)cos (

k
 d




                      (1) 

 
 

where d is the particle size; k is the Scherrer constant which is 0.9; λ is the wavelength (Cu Kα = 1.54); β is the full 

width at half maximum (FWHM); and θ is the corresponding Bragg diffraction. The surface area and pore size 

measurement were performed using Micromeritics ASAP 2020 instrument. The morphological structure was 

observed by JEOL JSM-6701F Field Emission Scanning Electron Microscope (FESEM) at a 10kV acceleration 

voltage with magnifications n of 50000x and 100000x attached with Electron Dispersive X-ray. The magnetization 
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analysis was performed using a Lake Shore vibrating sample magnetometer (VSM) 7404 model at room 

temperature. 

 

Synthesis of Fe3O4 nanoparticles  

The preparation of Fe3O4 nanoparticles was accomplished via modified co-precipitation method [12,13]. Equimolar 

amounts of FeCl2.4H2O (1.0 g, 5.0 mmol) and FeCl3.6H2O (2.6 g, 9.6 mmol) were mixed together in 100 mL of 

distilled water with vigorous stirring. The mixture was then treated with 100 mL of 0.5% SDS as a surfactant. An 

amount 10 mL of NH4OH was added dropwise into the mixture. The reaction was heated at 70 °C for 2 hours under 

nitrogen atmosphere. The black precipitate was thoroughly washed with deionized water and ethanol until a neutral 

pH was reached. Finally, the product was separated from the reaction mixture and dried at 60 °C for 24 hours. 

 

Fe3O4Fe2
+ Fe3

+
Surfactant, NH4OH

N2, 70 °C, 2 hours
+

 

Scheme 1. Preparation of surfactant-bound Fe3O4 nanoparticles 

 

 

Results and Discussion 

Surfactant-bound Fe3O4 nanoparticles were successfully synthesized using a simple chemical co-precipitation 

method of Fe(II) and Fe(III) in alkaline pH under nitrogen atmosphere. This study provided physicochemical results 

of Fe3O4 nanoparticles by adding surfactants of sodium dodecyl sulfate (SDS) that could effectively prompt the 

formation of monodispersed nanoparticles [11]. This research was promising and produced favorable findings as 

compared to previous works, which were focused on synthesizing Fe3O4 nanoparticles without a surfactant [13]. The 

use of surfactants could give better control for the particle size distribution and represented better dispersibility [14] 

since SDS is an anionic surfactant that could also form complex with Fe
2+ 

via ionic bonds [4]. The interaction 

occurred may lead to a strong ionic repulsion that could prevent close contact of the Fe3O4 nanoparticles [10] and 

become better catalyst support.  

 

Figure 1 shows the FTIR spectra of surfactant-bound Fe3O4 nanoparticles and pristine Fe3O4 as well as pure SDS 

included for comparison. For both iron oxide samples, the analysis indicated absorption peaks at the range of 530 

cm
-1

 - 593 cm
-1

 corresponding to the Fe-O vibration related to the magnetic phase [1,14]. For the SDS-Fe3O4 

spectrum, the peak around 1224 cm
-1

 could be assigned for the characteristics of sulfate group SO4
2-

 of SDS. The 

stretching vibration of S-O bond could be attributed by the peak of around 895 cm
-1

, which confirmed that the 

surfactant was successfully immobilized on the synthesized iron oxides. These results are in close agreement with 

previous reported articles [15, 16]. 

 

The XRD pattern of Fe3O4 nanoparticles synthesized with SDS is shown in Figure 2. The red line pattern of bare 

Fe3O4 nanoparticles was also attached for comparison. Six characteristic peaks at 2θ: 30.1°, 35.4°, 43.1°, 53.4°, 

57.0° and 62.6° were corresponding to the diffractions of (220), (311), (400), (422), (511), and (440) crystal planes 

of Fe3O4 with spinel structure [17]. The results obtained were in good agreement and matched well between the 

pattern of the standard Fe3O4 (JCPDS CARD NO. 19-629). Peak broadening observed was reflected by small-sized 

particles [18]. Taking into account, the synthesized catalyst support showed the normal and typical XRD pattern 

with no impurity peaks were detected in the sample [19]. The relative intensity of reflection peaks in the surfactant-

bound Fe3O4 nanoparticles were dramatically decreased, promoting an interaction between the surfactant and iron 

oxide [20]. The approximate diameter of the surfactant-bound Fe3O4 using the Scherrer equation (Eqn. 1) was 6 nm, 

which was smaller than previously reported [13]. 
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Figure 1.  FT-IR spectrum of (a) pure SDS, (b) Fe3O4 nanoparticles, and (c) SDS-Fe3O 
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Figure 2.  XRD patterns of bare Fe3O4 nanoparticles and surfactant-bound Fe3O4 nanoparticles 

 

The morphology of synthesised catalyst support was obtained by using a Field Emission Scanning Electron 

Microscopy/Electron Dispersive X-ray (FESEM/EDX). As shown in Figure 3, the micrographs displayed that the 

surfactant-bound Fe3O4 nanoparticles were composed of small particles with nearly spherical shape [16]. The 

nanoparticles appeared as clustered together and loosely distributed which could prevent the agglomerations of the 

nanoparticles. The EDX spectrum clearly showing the appearance of surfactant-bound Fe3O4 nanoparticles by 

indicating Fe-O group of the element with the corresponding peaks of Na, S and C are the main constituents in the 

synthesized of magnetic nanoparticles.   

 

The TGA curve of surfactant-bound Fe3O4 nanoparticles with SDS is shown in Figure 4. It can be seen that there is 

a slightly different thermal behavior as compared with bare Fe3O4 nanoparticles.  The TGA result showed that the 

surfactant-bound Fe3O4 nanoparticles were stable up to 200 °C. The difference might originate from the presence of 

SDS coated on the surface of nanoparticles [16]. Three sharp weight losses were also observed in the TGA curve 

with a total loss of 6%. The initial weight loss occurred at the temperature range of 25 °C – 200 °C, which was 

possibly due to the removal of adsorbed water and/or solvent on the surface of nanoparticles [20,21]. The second 

decomposition around 250 °C to 300 °C indicated SDS degradation in Fe3O4 nanoparticles with the percentage of 

(a) 

(b) 

(c) 

SO4
2- S-O Fe-O 

Fe-OH 
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mass loss about 3%. The third peak derived at 600 °C – 700 °C was attributed to the phase transition from Fe3O4 to 

FeO, because FeO was thermodynamically stable above 570 °C in the phase diagram of Fe-O system [22]. 

 

   

 

Figure 3.   FESEM images of Fe3O4 nanoparticles with scale bar (a) 500 nm (b) 400 nm and (c) the EDX image of 

surfactant-bound Fe3O4 nanoparticles  
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Figure 4.  TGA curve of bare Fe3O4 nanoparticles and surfactant-bound Fe3O4 nanoparticles 
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The BET surface area and pore size measurements of the surfactant–bound and bare Fe3O4 nanoparticles are 

tabulated in Table 1. The addition of a stabiliser onto the magnetite nanoparticles gave a significant influence on the 

surface area and size. Surfactant-bound Fe3O4 nanoparticles were found to possess a higher surface area and pore 

volume as compared to bare magnetite nanoparticles at 117 m
2
g

-1
 and 0.4 cm

3
g

-1
, respectively [13]. Gupta and co-

workers reported that the synthesis of Fe3O4 nanoparticles without a surfactant had a tendency for agglomeration 

due to the hydrophobic bonds between the particles in the surface [23]. Hence, the magnetite nanoparticles existed 

in obviously large clusters. Consequently, surfactants play a vital role as stabilisers and particle protection from 

flocculation and agglomeration [10]. 

 

Table 2.  BET results of Fe3O4 

Sample Specific surface area 

(m
2
/g) 

Pore volume 

(cm
3
/g) 

Fe3O4 94 0.3 

SDS-Fe3O4 117 0.4 

 

The magnetic properties of the synthesised surfactant-bound Fe3O4 (Figure 5) was examined by vibrating sampling 

magnetometer (VSM) at room temperature. The magnetisation curve of bare iron oxides was included for 

comparison. From the curve, it was confirmed that the synthesised Fe3O4 nanoparticles possessed nearly 

superparamagnetic behaviour. It was found that the saturation magnetisation value of the studied sample was 53. 98 

emu/g, which was lower than that reported for pure Fe3O4 nanoparticles [14]. This can be explained as the 

introduction of non-magnetic materials (surfactants) on the synthesised compound leading to the diminution of 

magnetisation. Another factor that leads to the gradual decline in the saturation magnetisation value of the sample is 

that the surface is influenced by the reduced particle sizes, which caused the magnetic moments to be canted [15]. 
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Figure 5.  Magnetization curve of surfactant-bound Fe3O4 and bare Fe3O4 (a) and photograph of the magnetic 

separation of surfactant-bound Fe3O4 using an external magnetic field (b) 

 

 

Conclusion 

A recoverable surfactant-bound Fe3O4 nanoparticle as catalyst support was successfully synthesized via simple 

chemical co-precipitation method and the synthesized particles were characterized using several spectroscopic and 

analytical techniques. The physicochemical properties of the surfactant-bound Fe3O4 nanoparticles as catalyst 

(a) 

(b) 
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support showed promising properties for homogeneous catalyst. Thus, the nanoparticles obtained could be 

potentially used as catalyst support that could easily be separated by an external magnetic field. 
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