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Abstract

Magnetic nanoparticles are highly valuable solid. support for the attachment of homogeneous inorganic catalyst and
organocatalyst. In this study, surfactant-bound Fe;O, nanoparticles were successfully synthesized via a co-precipitation method
between FeCls.6H,0 and FeCl,.4H,0, in which sodium dodecyl sulfate (SDS) was applied as a stabilizing agent. The use of
surfactant was also to avoid the agglomeration process during the catalytic activity. Different techniques were employed to
characterize the synthesized magnetic nanoparticles, such as Fourier Transform Infrared Spectroscopy (FTIR),
Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy/Electron
Dispersive X-ray (FESEM/EDX); Vibrating Sample Magnetometer (VSM), and Brunauer—Emmett—Teller (BET) Surface Area
Analysis. The specific surface area analysis of surfactant-bound FesO, nanoparticles gave a higher value (117 m%g) with large
pore volume (0.40 cm®/g) compared to bare iron oxide. The VSM pattern demonstrates superparamagnetic properties of
magnetic nanoparticles with saturation magnetization M, 53.98 emu/g. The analyses obtained recommended the surfactant-
bound Fe;O, nanoparticles potentially to be used as solid support for catalytic applications due to their unique properties, for
example high surface area, superparamagnetism, and well-dispersed material.

Keywords: magnetite nanoparticles, catalyst support, heterogeneous catalysis

Abstrak

Nanopartikel magnet merupakan penyokong padu yang berharga untuk pengikatan mangkin homogen tak organik dan mangkin
homogen organo. Dalam kajian ini, nanopartikel Fe;O, surfaktan terikat berjaya disintesis melalui kaedah pemendakan bersama
antara FeCl;.6H,0 dan FeCl,.4H,0, yang menggunakan natrium dodesil sulfat sebagai agen penstabilan. Penggunaan surfaktan
juga untuk mengelak proses aglomerasi semasa aktiviti pemangkinan. Pelbagai teknik digunakan untuk pencirian nanopartikel
magnet yang disintesis seperti Spektroskopi Inframerah Penjelmaan Fourier (FTIR), Analisis Gravimetri Terma (TGA),
Pembelauan Sinar-X (XRD), Mikroskopi Elektron Pengimbasan Pancaran Medan/Sinar-X Sebaran Elektron (FESEM),
Magnetometer Sampel Bergetar (VSM), dan Analisis Luas Permukaan Brunauer—Emmett-Teller(BET). Analisis luas permukaan
khusus bagi nanopartikel Fe;O, surfaktan terikat memberikan suatu nilai yang tinggi (117 m?/g) dengan isi padu liang besar (0.40
cm®/g) berbanding dengan oksida besi tanpa surfaktan. Pola VSM mempamerkan sifat superparamegnetik bagi nanopartikel
magnetik dengan nilai pemagnetan tepu M, 53.98 emu/g. Analisis yang diperolehi mengesyorkan bahawa nanopartikel Fe;O,
surfaktan terikat berpotensi digunakan sebagai penyokong padu untuk aplikasi pemangkinan disebabkan oleh sifat-sifat uniknya
seperti luas permukaan yang tinggi, superparamagnet dan sebagai bahan terserak yang baik.
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Introduction

The use of magnetic nanoparticles as solid support materials is considered as a bridge between homogeneous and
heterogeneous catalysts. Today, the development of iron oxide (FesO,) nanoparticles has led to the dramatic
expansion of their applications by enabling environmentally-friendly and sustainable catalytic processes [1]. Having
unique properties such as superparamagnetism, high surface area, low toxicity and economical, Fe;O4 nanoparticles
possess numerous benefits for isolation and separation from desired mixtures using an external magnet [2,3].
Consequently, Fes04 nanoparticles are widely employed as solid support materials for homogeneous catalysts in the
cross-coupling reactions [4].

Previous works reported that the synthesized Fe;O,4 nanoparticles contributed to the spontaneous agglomeration in
the catalytic system, which later became a critical problem [5]. Iron oxides have bare surface potential to
agglomerate due to van der Waals forces, high energy surface, and strong magnetic attraction.among particles [6,7].
The agglomeration of the nanoparticles may reduce the total exposed surface area of the catalyst as well as affect its
magnetic properties [8,9]. Therefore, a modification for protection strategies has'been made as a prerequisite to
synthesise stable and effective catalyst support materials [5]. Hence, stabilizers such as surfactant were employed at
the time of preparation. By coating and protecting the surface of Fe3O4 nanoparticles, the agglomeration and
aggregation of the solid support materials could be reduced, and particle size could also be controlled in order to
achieve compatibility and stability [10,11].

This study reported the synthesis and physicochemical propertiesof surfactant-bound Fe;O, nanoparticles
potentially used as solid support materials for homogeneous catalyst. The synthesized catalyst support was
spectroscopically characterized by Fourier Transform ‘Infrared ‘Spectroscopy (FTIR), X-ray Diffraction (XRD),
Thermogravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FESEM), Vibrating Sample
Magnetometer (VSM),and Brunauer—-Emmett-Teller (BET) Surface Area Analysis.

Materials and Methods
Chemicals and reagents
Iron(I11) chloride hexahydrate, iron(Il) chloride tetrahydrate, and sodium dodecyl sulphate were purchased from
Sigma Aldrich, USA. Aqueous ammonia and absolute ethanol were supplied from MERCK Chemical Co. All
chemicals were used as received without any purification or any special precaution during the experimental
procedure.

Characterization

The synthesized surfactant-bound Fe;O, nanoparticles were successfully characterized using several spectroscopic
and analytical techniques. The infrared spectrum of sample was collected on a Perkin EImer 100 Fourier Transform
Infrared Spectroscopy in the range of 4000-400 cm™ by using potassium bromide (KBr) pellets. The thermal
properties were investigated using Perkin EImer TGA Analyser (Perkin Elmer Pyris 6 TGA) from 30 °C to 900 °C
at the heating rate of 10 °C/min under nitrogen atmosphere. The XRD pattern was recorded on a Rigaku Miniflex Il
X-ray diffractometer with an X-ray of the Cu Ko radiation filtered by a Ni filter and had a wavelength of y = 1.54.
An estimation of particle size was performed using Scherrer equation:

kA 1)
(B cosH)

where d is the particle size; k is the Scherrer constant which is 0.9; A is the wavelength (Cu Ka = 1.54); B is the full
width at half maximum (FWHM); and 0 is the corresponding Bragg diffraction. The surface area and pore size
measurement were performed using Micromeritics ASAP 2020 instrument. The morphological structure was
observed by JEOL JSM-6701F Field Emission Scanning Electron Microscope (FESEM) at a 10kV acceleration
voltage with magnifications n of 50000x and 100000x attached with Electron Dispersive X-ray. The magnetization



Malaysian Journal of Analytical Sciences, Vol 23 No 5 (2019): Xxx - Xxx
DOI: https://doi.org/10.17576/mjas-2019-2305-zz

analysis was performed using a Lake Shore vibrating sample magnetometer (VSM) 7404 model at room
temperature.

Synthesis of FesO4 nanoparticles

The preparation of Fe;0, nanoparticles was accomplished via modified co-precipitation method [12,13]. Equimolar
amounts of FeCl,.4H,0 (1.0 g, 5.0 mmol) and FeCl;.6H,0 (2.6 g, 9.6 mmol) were mixed together in 100 mL of
distilled water with vigorous stirring. The mixture was then treated with 100 mL of 0.5% SDS as a surfactant. An
amount 10 mL of NH,OH was added dropwise into the mixture. The reaction was heated at 70 °C for 2 hours under
nitrogen atmosphere. The black precipitate was thoroughly washed with deionized water and ethanol until a neutral
pH was reached. Finally, the product was separated from the reaction mixture and dried at 60 °C for 24 hours.

Surfactant, NH,OH
Fe2+ + Fe3+
N5, 70 °C, 2 hours
e

Scheme 1. Preparation of surfactant-bound Fe;O, nanoparticles

Results and Discussion

Surfactant-bound Fe;O, nanoparticles were successfully synthesized using a simple chemical co-precipitation
method of Fe(Il) and Fe(l1l) in alkaline pH under nitrogen atmosphere.. This study provided physicochemical results
of Fe;0, nanoparticles by adding surfactants of sodium dodecyl sulfate (SDS) that could effectively prompt the
formation of monodispersed nanoparticles [11]. This research was promising and produced favorable findings as
compared to previous works, which were focused on synthesizing Fe;O, nanoparticles without a surfactant [13]. The
use of surfactants could give better control for the Pparticle size distribution and represented better dispersibility [14]
since SDS is an anionic surfactant that could also form-complex with Fe?* via ionic bonds [4]. The interaction
occurred may lead to a strong ionic repulsion that.could prevent close contact of the Fe;O, nanoparticles [10] and
become better catalyst support.

Figure 1 shows the FTIR spectra of surfactant-bound Fe;O,4 nanoparticles and pristine FesO, as well as pure SDS
included for comparison. For both iron.oxide samples, the analysis indicated absorption peaks at the range of 530
cm™ - 593 cm™ corresponding.to the Fe-O vibration related to the magnetic phase [1,14]. For the SDS-Fe;O,
spectrum, the peak around.1224 em™ could be assigned for the characteristics of sulfate group SO,* of SDS. The
stretching vibration of S-O bond could be attributed by the peak of around 895 cm™, which confirmed that the
surfactant was successfully immobilized on the synthesized iron oxides. These results are in close agreement with
previous reported articles,[15, 16].

The XRD pattern of Fe3O,4 nanoparticles synthesized with SDS is shown in Figure 2. The red line pattern of bare
Fe;O4 nanoparticles was also attached for comparison. Six characteristic peaks at 20: 30.1°, 35.4°, 43.1°, 53.4°,
57.0° and 62.6° were corresponding to the diffractions of (220), (311), (400), (422), (511), and (440) crystal planes
of Fe3O, with spinel structure [17]. The results obtained were in good agreement and matched well between the
pattern of the standard Fe;0, (JCPDS CARD NO. 19-629). Peak broadening observed was reflected by small-sized
particles [18]. Taking into account, the synthesized catalyst support showed the normal and typical XRD pattern
with no impurity peaks were detected in the sample [19]. The relative intensity of reflection peaks in the surfactant-
bound Fe;O4 nanoparticles were dramatically decreased, promoting an interaction between the surfactant and iron
oxide [20]. The approximate diameter of the surfactant-bound Fe;O,4 using the Scherrer equation (Eqn. 1) was 6 nm,
which was smaller than previously reported [13].
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Figure 1. FT-IR spectrum of (a) pure SDS, (b) Fe;0, nanoparticles, and (c) SDS-Fe;O
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Figure 2. XRD patterns of bare Fe;O,4 nanoparticles and surfactant-bound Fe;O,4 nanoparticles

The morphology of synthesised catalyst support was obtained by using a Field Emission Scanning Electron
Microscopy/Electron Dispersive X-ray (FESEM/EDX). As shown in Figure 3, the micrographs displayed that the
surfactant-bound FesO,4 nanoparticles were composed of small particles with nearly spherical shape [16]. The
nanoparticles appeared as clustered together and loosely distributed which could prevent the agglomerations of the
nanoparticles. The EDX spectrum clearly showing the appearance of surfactant-bound Fe;O, nanoparticles by
indicating Fe-O group of the element with the corresponding peaks of Na, S and C are the main constituents in the
synthesized of magnetic nanoparticles.

The TGA curve of surfactant-bound Fe;O, nanoparticles with SDS is shown in Figure 4. It can be seen that there is
a slightly different thermal behavior as compared with bare Fe;O4 nanoparticles. The TGA result showed that the
surfactant-bound Fe;O, nanoparticles were stable up to 200 °C. The difference might originate from the presence of
SDS coated on the surface of nanoparticles [16]. Three sharp weight losses were also observed in the TGA curve
with a total loss of 6%. The initial weight loss occurred at the temperature range of 25 °C — 200 °C, which was
possibly due to the removal of adsorbed water and/or solvent on the surface of nanoparticles [20,21]. The second
decomposition around 250 °C to 300 °C indicated SDS degradation in Fe;O, nanoparticles with the percentage of
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mass loss about 3%. The third peak derived at 600 °C — 700 °C was attributed to the phase transition from Fe;0,4 to
FeO, because FeO was thermodynamically stable above 570 °C in the phase diagram of Fe-O system [22].

Figure 3. FESEM images of Fe;O4 nanoparticles with scale bar (a) 500 nm (b) 400 nm and (c) the EDX image of
surfactant-bound Fe;O, nanoparticles
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Figure 4. TGA curve of bare Fe;O4 nanoparticles and surfactant-bound Fe;O4 nanoparticles
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The BET surface area and pore size measurements of the surfactant-bound and bare Fe;O, nanoparticles are
tabulated in Table 1. The addition of a stabiliser onto the magnetite nanoparticles gave a significant influence on the
surface area and size. Surfactant-bound Fe;O, nanoparticles were found to possess a higher surface area and pore
volume as compared to bare magnetite nanoparticles at 117 m?g™ and 0.4 cm®g™, respectively [13]. Gupta and co-
workers reported that the synthesis of Fe;O4 nanoparticles without a surfactant had a tendency for agglomeration
due to the hydrophobic bonds between the particles in the surface [23]. Hence, the magnetite nanoparticles existed
in obviously large clusters. Consequently, surfactants play a vital role as stabilisers and particle protection from
flocculation and agglomeration [10].

Table 2. BET results of Fe;0,4

Sample Specific surface area Pore volume
(m’/g) (cm®/g)

Fe;0, 94 0.3

SDS-Fe;0, 117 0.4

The magnetic properties of the synthesised surfactant-bound Fe;O, (Figure 5):was examined by vibrating sampling
magnetometer (VSM) at room temperature. The magnetisation curve ‘of.bare iron oxides was included for
comparison. From the curve, it was confirmed that the synthesised Fe;O, nanoparticles possessed nearly
superparamagnetic behaviour. It was found that the saturation magnetisation value of the studied sample was 53. 98
emu/g, which was lower than that reported for pure Fe;O, nanoparticles [14]. This can be explained as the
introduction of non-magnetic materials (surfactants) on the’synthesised compound leading to the diminution of
magnetisation. Another factor that leads to the gradual decline in thesaturation magnetisation value of the sample is
that the surface is influenced by the reduced particle sizes, which caused the magnetic moments to be canted [15].
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Figure 5. Magnetization curve of surfactant-bound Fe;O, and bare Fe;O, (a) and photograph of the magnetic
separation of surfactant-bound Fe;O,4 using an external magnetic field (b)

Conclusion
A recoverable surfactant-bound Fe;O, nanoparticle as catalyst support was successfully synthesized via simple
chemical co-precipitation method and the synthesized particles were characterized using several spectroscopic and
analytical techniques. The physicochemical properties of the surfactant-bound FezO, nanoparticles as catalyst
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support showed promising properties for homogeneous catalyst. Thus, the nanoparticles obtained could be
potentially used as catalyst support that could easily be separated by an external magnetic field.
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