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Abstract
[bookmark: _Hlk521085477]The aim of this case study was to estimate the bioaccessibility of 232Th and 238U from lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas Advanced Materials Plant by analysing the solubility of these radionuclides in synthetic gastrointestinal fluids. A DIN in vitro bioaccessibility method was applied to determine the targeted radionuclides from the LC and WLP residue, which were further evaluated through inductively coupled plasma mass spectrometry. 232Th and 238U concentrations in the gastrointestinal fluids portrayed the maximum amount of contaminants that were potentially available for intestinal absorption and transfer into the blood. The maximum concentrations of 232Th in the LC and WLP residue were 0.1410 ± 0.0331 mg kg-1 and 0.1621 ± 0.1190 mg kg-1, respectively. As for 238U in the LC and WLP residue during the intestinal phase for high-risk cases, the maximum concentrations were 0.0558 ± 0.0164 mg kg-1 and 0.0480 ± 0.0213 mg kg-1, respectively. The maximum bioaccessibility of 232Th and 238U was 0.14 % and 0.93 %, respectively. Based on the assessment, the committed equivalent dose and committed effective dose of 232Th and 238U were below the United Nations Scientific Committee on the Effects of Atomic Radiation reference values. Overall, the DIN in vitro bioaccessibility method is feasible to estimate the solubility of 232Th and 238U from LC and WLP residue, and is also useful for monitoring and risk assessment purposes for environmental, health, and contaminated samples.

Keywords: bioaccessibility, thorium, uranium, lanthanide concentrate, water leach purification

Abstrak
Tujuan kajian ini ialah mengkaji bio-kebolehcapaian 232Th dan 238U dari sampel lantanida pekat (LC) dan residu pemurnian larut resap air (WLP) yang terdapat di loji bahan termaju Lynas, dengan kaedah penentuan melalui kebolehlarutan radionuklid tersebut di dalam cecair sintetik gastrousus. Sampel LC dan residu WLP telah menjalani teknik bio-kebolehcapaian in vitro DIN, dan seterusnya sampel dianalisis menggunakan Spektrometer Jisim-Gandingan Plasma Teraruh. Kepekatan 232Th dan 238U dalam cecair gastrousus mewakili jumlah maksimum pencemaran radionuklid yang berpotensi diserap ke dalam badan melalui usus dan berpindah ke dalam darah. Kepekatan maksimum 232Th dalam LC dan residu WLP ialah 0.1410 ± 0.0331 mg kg-1 dan 0.1621 ± 0.1190 mg kg-1. Bagi 238U dalam LC dan residu WLP semasa fasa usus bagi kes berisiko tinggi ialah 0.0558 ± 0.0164 mg kg-1 dan 0.0480 ± 0.0213 mg kg-1. Nilai bio-kebolehcapaian maksimum bagi 232Th  dan 238U ialah 0.14% dan 0.93%. Berdasarkan kajian, dos komited setara dan dos komited berkesan bagi 232Th dan 238U adalah di bawah nilai rujukan United Nations Scientific Committee on the Effects of Atomic Radiation. Kesimpulannya, teknik bio-kebolehcapaian in vitro DIN sangat berguna untuk menganggar kelarutan 232Th dan 238U bagi tujuan pemantauan berterusan dan penilaian risiko terhadap alam sekitar, kesihatan manusia, dan sampel tercemar.


Kata kunci: bio-kebolehcapaian, torium, uranium, lantanida pekat, permurnian larut resap

Introduction
The world is currently facing intense demand and development of rare earth elements (REEs) for green and sustainable products in energy, armed forces, and manufacturing industries. Thus, to assist the global REEs market, the Lynas Advanced Materials Plant (LAMP) was built in the Gebeng Industrial Estate (GIE), Kuantan, Malaysia. This beneficial development brings investment profits in rare earth industry. About 0.03  106 t of rare earth ores production comes from Malaysia [1]. The LAMP processes lanthanide concentrate (LC) at an integrated processing site utilising physical and chemical treatment processes. Water leach purification (WLP) residue results from the leaching and purification of the water-soluble lanthanide components from the calcined and cracked concentrate. Radioactive elements, namely thorium dioxide (ThO2) and uranium oxide (U3O8), are present in the rare earth concentrate that is processed by the LAMP. This plant is expected to yield approximately 65 000 t/a of rare earth concentrate with a rare earth oxide (REO) concentration of 40 %, a ThO2 concentration of 0.17 %, and a concentration of U3O8 of 0.003 % [2]. According to United States Environmental Protection Agency (USEPA), the rare earth concentrate is classified as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM) [3]. Even though REEs have been considered to be beneficial and profitable to Malaysia, the occupational, public safety, and health risks related to REEs should be addressed at their stages of mining, transportation, processing, and waste disposal, as well as decommissioning.

Internal irradiation can be triggered when radionuclides enter the human body by inhalation or ingestion [4, 5]. The most significant pathway for radionuclide ingestion is when radionuclides become integrated with food. Coincidental ingestion of soil material or soil dust is related to unusual soil ingestion called pica. The contaminated soil surface is transferred to hands, food and beverages, cigarettes, or other items that may cause ingestion of radioactive contaminants [6, 7]. Using in vitro bioaccessibility models, the digestion processes in the gastrointestinal tract can be imitated using a simplified technique. Bioaccessibility of compounds from their matrix during transit in the gastrointestinal tract can be examined as an aspect of oral internal exposure to the contaminant by applying an in vitro bioaccessibility model [8]. Bioaccessibility denotes the fragment of a contaminant that is propagated from soil into solution by digestive juices [9]. It constitutes the utmost number of contaminants that are available for intestinal absorption. This is the theoretical fraction convenient for adsorption through the gastrointestinal tract [10]. In this investigation, the sole medium for occupational exposure through radioactivity ingestion was when radionuclides became integrated with dust or other substances and were later exposed to food or other entities that were put into the mouth, for instance pens or fingers. Th and U cause concern for authorities as they may cause health hazards, particularly when they have been ingested. Th and U are both from chemical and radiological standpoints and their compounds are immensely toxic [11].

The in vitro bioaccessibility method was utilised to evaluate the LC and WLP residue radionuclide solubility potential or the ability of 232Th and 238U to be absorbed in the human digestive system. The study of 232Th and 238U solubility in synthetic gastrointestinal digestion liquid by applying a DIN in vitro bioaccessibility method is conducted outside the human digestive system in a system similar to the digestive systems of adults and children. Theoretically, if a fragment of discharged pollutants from soil entered the synthetic gastrointestinal fluids, then it could be implied as soluble. The absorption in the gut and transfer into the blood were represented by the maximum quantity of contaminants in the soil. This approach is also appropriate for bioaccessibility tests for allocating data in human health risk assessments. The objectives of this study were to determine the solubility level of 232Th and 238U in LC and WLP residue, and to analyse the effectiveness of 232Th and 238U solubility with synthetic gastrointestinal fluids using a DIN in vitro bioaccessibility method. Quantitative determination of 238Th and 232U in LC and WLP residue is of great interest and is vital for geological investigation. Bioaccessibility and oral bioavailability theories are significant to quantify the potential risks that are linked with oral exposure to environmental contaminants.
Materials and Methods
Sample collection and preparation
The LC and WLP residue samples used in this study were collected from the LAMP, Kuantan, Pahang. The samples were air-dried and passed through a 2 mm sieve for the later purpose of bioaccessibility assessment. The total initial concentrations of 232Th and 238U were analysed using a Bruker S8 Tiger X-Ray fluorescence spectrometer (XRF); the concentrations are shown in Table 1.

Table 1.  Concentrations of 232Th and 238U before bioaccessibility method

	
	Concentration (mg kg-1)

	
	232Th
	238U

	Lanthanide concentrate (LC)
	18.0 – 101.0
	2.0 – 6.0

	Water leach purification (WLP) residue
	27.0 – 155.1
	2.0 – 6.9



DIN in vitro bioaccessibility method
The DIN in vitro bioaccessibility method was used to evaluate bioaccessibility. The German method E DIN 19738, which is also known as the Standardised German In Vitro Assay model, is a static gastrointestinal model that involves synthetic gastric fluids simulation followed by synthetic gastrointestinal fluids simulation [12]. The bioaccessibility method was started by suspending 2 g of LC or WLP residue samples in triplicate, where each sample was mixed with synthetic gastric fluids (solid to liquid ratio of 1:50) and later incubated for 2 hours at a pH of 1.4 ± 0.1. About 10 mL of the incubated gastric fluids were extracted, centrifuged at 3500 rpm for 15 minutes, and filtrated (0.45 µm filter paper) with a Rocker 400 laboratory vacuum pump. To fabricate the gastrointestinal fluids, the remaining volume of artificial gastric fluids was mixed with artificial intestinal fluids (solid to liquid ratio of 1:100). The artificial gastrointestinal fluids were further incubated for 6 hours at a pH of 7.5 ± 0.2. Then, 10 mL were extracted, centrifuged at 3500 rpm for 15 minutes, and filtrated. Both artificial fluids were incubated in a water bath that was kept at a constant temperature of 37 °C to simulate a normal human body temperature. The filtrated gastric and gastrointestinal fluids were sent for analysis with inductively coupled plasma mass spectrometry (ICP-MS) (Perkin Elmer ELAN 6000).

The elemental determination was conducted by irradiation of approximately 10 mL of each sample for 5 hours at the Malaysian Nuclear Agency, Bangi. Blanks of artificial gastric and gastrointestinal fluids without LC and WLP residue were run as controls. Table 2 portrays the preparation of artificial gastric and gastrointestinal fluids for the DIN in vitro bioaccessibility method. By analysing International Atomic Energy Agency (IAEA) standard reference materials (Soil-7 and 448), quality control of the analysis was conducted. The procedure was conducted to determine the concentrations of 232Th and 238U integrated in the gastrointestinal system at intervals of 5 hours.

Bioaccessibility of a particular radionuclide was calculated using the following equation 1:

Bioaccessibility =  x 100%                                                                                                                                     (1)

where Bg is the concentration of 232Th or 238U presented in artificial gastrointestinal fluids (mg kg-1) and Bs is the concentration presented in samples before applying the in vitro bioaccessibility method (mg kg-1). 

The values of the committed effective dose and committed equivalent dose were calculated using the following equation 2:
[bookmark: OLE_LINK26][bookmark: OLE_LINK27][bookmark: OLE_LINK3][bookmark: OLE_LINK4]HA = Σj IAjhAj                                                                                                                                                                     (2)
where HA is the committed effective dose or the committed equivalent dose (Sv) by ingestion, IAj is 232Th or 238U activity (Bq) in the samples (Bq kg-1), and hAj is the ingestion dose coefficient (Sv Bq-1) for the effective dose or the target organs for 232Th or 238U.

Table 2.  Preparation for each sample (200 ml) in gastric fluid and (200 ml) in gastrointestinal fluid
	[bookmark: _Hlk519798443]
	Gastric Fluid
	Gastrointestinal Fluid

	Bile Bovine
	-
	1.800 g

	Calcium Chloride Dihydrate (CaCl2 x 2H2O)
	-
	0.100 g

	Hydrochloric acid (30% of HCl)
	pH adjustment
	-

	Magnesium Chloride Hexahydrate (MgCl2 x 6H2O)
	-
	0.040 g

	Mucin
	0.600 g
	-

	Pancreatin
	-
	1.800 g

	Pepsin
	0.200 g
	-

	Potassium Chloride (KCl)
	0.140 g
	0.060 g

	Potassium Dihydrogen Phosphate (KH2PO4)
	0.054 g
	-

	Sodium Bicarbonate (NaHCO3 solid)
	-
	0.200 g

	Sodium Chloride (NaCl)
	0.580 g
	pH adjustment

	Trypsin
	-
	0.060 g

	Urea (CH4N2O)
	-
	0.060 g

	Final pH 
	2.0
	7.5









Results and Discussion
232Th  and 238U concentrations 
[bookmark: _Hlk521078376][bookmark: _Hlk521078401][bookmark: _Hlk521082836]The accuracy of the procedure used for determination of total concentrations of 232Th and 238U in the LC and WLP residue was verified. The results are shown in Table 1. The XRF analysis showed that the concentrations of 232Th in the WLP residue and LC were 155.1 mg kg-1 and 101.0 mg kg-1, respectively, where the former was the highest concentration overall. On the other hand, the concentrations of 238U in the WLP residue and LC were 6.9 mg kg-1 and 6.0 mg kg-1, respectively. The WLP residue is the major waste material resulting from water leaching and purification processes of the LC in the rare earth industry. This process utilises magnesium oxide and water, which produces WLP residue and is considered the most toxic due to its elevated levels of U, Th, associated radioactivity, and heavy metals compared with neutralisation underflow (NUF) and flue gas desulphurisation (FGD) waste [13, 14]. The concentration of 232Th varied in the LC and WLP residue, which could have been due to the geological composition and the content of 232Th and 238U samples from each area where the soils originated. The original 232Th and 238U concentrations in rocks may have varied because of alteration or metamorphic processes [15]. The concentration of 232Th was highest in the WLP residue, as the WLP residue undergoes refining processes that cause 232Th to easily separate from the minerals inside the soil [16].

[bookmark: _Hlk521082869][bookmark: _Hlk521082909]Heavy metals and radionuclide behaviours in soil are significantly related to soil properties. Soil determinants, such as pH, ferromanganese oxides, and organic matter, may be better predictors for metal mobility [17]. According to the National Toxics Network (NTN) report, the rare earths concentrate imported from Australia is expected to have ThO2 concentrations of 1600 mg kg-1 and U3O8 concentrations of 28 mg kg-1. These concentrations correspond to a 232Th activity concentration of 5.7 Bq g-1 and a 238U activity concentration of 0.28 Bq g-1. The WLP residue is expected to have a ThO2 content of 1655 mg kg-1 and a U3O8 content of 22.5 mg kg-1 [15]. Based on the International Atomic Energy Agency (IAEA) report, the rare earth, Th, and U contents of the ore are shown in Table 3 [18]. These concentrations correspond to a 232Th activity concentration of 5.9 Bq g-1 and a 238U activity concentration of 0.24 Bq g-1.

Table 3.  Rare earth, thorium and uranium contents of Mount Weld Ore

	
	Concentration (%)

	
	Average
	Maximum

	Total REO
	17 - 18
	42

	ThO2
	0.075
	0.18

	U3O8
	0.003
	0.006



[bookmark: _Hlk521082968][bookmark: _Hlk521083003]In this study, 232Th and 238U concentrations were converted to specific activity using a radioelement conversion factor, where 1 mg kg-1 of Th in rock is equal to 4.06 Bq kg-1 232Th, and 1 mg kg-1 of U in rock is equal to 12.35 Bq kg-1 238U. The specific activities of 232Th for the LC and WLP residue were 0.4101 Bq g-1 and 0.6297 Bq g-1, respectively, while the specific activities of 238U in the LC and WLP residue were 0.0741 Bq g-1 and 0.0852 Bq g-1, respectively. The specific activities of 232Th and 238U before the DIN in vitro bioaccessibility method were lower than those in the NTN report.

[bookmark: _Hlk521083048]By using ICP-MS, the occupational exposure of workers to 232Th and 238U was evaluated by determining both concentrations in the gastrointestinal tract. Table 4 and Table 5 show the solubility of 232Th and 238U in the LC and WLP residue within the first 5 hour interval. The general concentrations of 232Th and 238U during the gastric phase were in the range of 0.0580–0.0598 mg kg-1 for 232Th and 0.0473–0.0554 mg kg-1 for 238U in the LC, while they were 0.4793–0.5495 mg kg-1 for 232Th and 0.7401–0.8731 mg kg-1 for 238U in the WLP residue. The concentrations of 232Th and 238U during the gastrointestinal phase were in the range of 0.1167–0.1410 mg kg-1 for 232Th and 0.0437–0.0558 mg kg-1 for 238U in the LC, and 0.0407–0.0480 mg kg-1 for 238U and 0.1621–0.0779 mg kg-1 for 232Th in the WLP residue.

Table 4.  Concentration of 232Th after DIN in vitro bioaccessibility method
	Time
(h)
	Concentration of 232Th (mg kg-1)

	
	Gastric Phase
	Gastrointestinal Phase

	
	Lanthanide Concentrate (LC)
	Water Leach Purification (WLP)
	Lanthanide Concentrate (LC)
	Water Leach Purification (WLP)

	1
	0.0598 ± 0.017
	0.4793 ± 0.0755
	0.1175 ± 0.008
	0.1621 ± 0.119

	2
	0.0597 ± 0.027
	0.5495 ± 0.0422
	0.1167 ± 0.0198
	0.0779 ± 0.0352

	3
	0.0597 ± 0.0257
	0.5461 ± 0.0414
	0.1261 ± 0.0159
	0.0844 ± 0.0414

	4
	0.0580 ± 0.0221
	0.5402 ± 0.0551
	0.1260 ± 0.0347
	0.0889 ± 0.046

	5
	0.0583 ± 0.0220
	0.5222 ± 0.0414
	0.1410 ± 0.0331
	0.0951 ± 0.0529













Table 5.  Concentration of 238U after DIN in vitro bioaccessibility method
	[bookmark: _Hlk517946005]Time
(h)
	Concentration of 238U (mg kg-1)

	
	Gastric Phase
	Gastrointestinal Phase

	
	Lanthanide Concentrate 
(LC)
	Water Leach Purification (WLP)
	Lanthanide Concentrate (LC)
	Water Leach Purification (WLP)

	1
	0.0473 ± 0.0059
	0.7401 ± 0.1038
	0.0437 ± 0.0086
	0.0467 ± 0.0257

	2
	0.0523 ± 0.0048
	0.8294 ± 0.0676
	0.0534 ± 0.0124
	0.0407 ± 0.0189

	3
	0.0525 ± 0.0054
	0.8731 ± 0.0548
	0.0535 ± 0.0132
	0.0422 ± 0.0191

	4
	0.0554 ± 0.0045
	0.8134 ± 0.0773
	0.0558 ± 0.0164
	0.0480 ± 0.0213

	5
	0.0500 ± 0.0043
	0.8671 ± 0.2252
	0.0517 ± 0.0098
	0.0430 ± 0.0198















[bookmark: _Hlk521083622][bookmark: _Hlk521083637][bookmark: _Hlk519151784]The maximum concentrations of 232Th in the LC and WLP residue during the intestinal phase were 0.1410 ± 0.0331 mg kg-1 and 0.1621 ± 0.1190 mg kg-1, respectively. As seen in Figure 1, the solubility of 232Th in the LC during the gastric phase slightly decreased at period 6 (7-hour mark), while the solubility of 232Th in the LC increased gradually during the intestinal phase. The increasing solubility of 232Th in the LC during the intestinal phase was due to its content of ThO2, which is insoluble in acid and alkali. According to Langmuir and Herman [19], ThO2 solubility with organic ligands present is increased by 5 orders of magnitude compared with the purely inorganic solubility at a pH of 5. The range in increased solubility extended up to a pH of 8, where inorganic ligands alone only significantly affected the solubility below a pH of 7. Thus, it was proven that 232Th might exist in insoluble and refractory forms in LC. After treating the LC with concentrated sulphuric acid in the plant process, 232Th was removed with other impurities into the WLP residue and remained in insoluble form, which was not dissolved by strong acids or alkali. Furthermore, the differences in pH in the content of the upper gastrointestinal tract between fed and fasted states may also influence the dissolution and absorption of weakly acidic and basic of ingestion soil. The fate and mobility of Th in environmental media are governed by its chemical and biological behaviours. The quadrivalent Th compounds are very stable towards reducing agents. Because of its low solubility, Th, which is discharged as ThO2 on water surfaces from mining, milling, and processing, is present as suspended particles or sediments in water [20]. The International Commission on Radiological Protection (ICRP) has proposed a human gastrointestinal absorption value of 0.02 % for all forms of Th [21]. Based on Johnson and Lamothe’s review of literature, a human gastrointestinal absorption value of 0.1 % to 1 % was calculated [22]. Meanwhile, the United State Environmental Protection Agency (USEPA) highlighted that the average person ingests about 2 µg of U in food and water every day, but only a very minor fraction of 1 % or 2 % is absorbed into the body [23].

[image: C:\Users\SHAHID~1\AppData\Local\Temp\Rar$DI82.320\Fig. 3 (a)  Solubility of 232Th in lanthanide concentrate (LC) and water leach purification (WLP) residue during gastric phase.tif]

Figure 1.  232Th solubility in lanthanide concentrate and water leach purification residue during gastric phase

[bookmark: _Hlk521083663][bookmark: _Hlk521083679][bookmark: _Hlk521083696][bookmark: _Hlk521083723][bookmark: _Hlk521083742]Figure 2 shows that the solubility of 232Th in the WLP residue during the gastric phase gradually increased. Contrastingly, the solubility of 232Th in the WLP residue during the intestinal phase decreased. The decrease in 232Th in the WLP residue could have been due to chemical precipitation at a pH of 7.5, while the solubility of 232Th decreased due to adsorption in mineral soils, organic material, and other suspended solids because absorption of metals by soil is known to increase with pH [24]. Increasing pH intensifies 232Th adsorption into clays, oxides, and organic matter, which is almost accomplished at a pH of 6.5 [25]. Soil properties, particularly pH and existing organic matter, influenced the absorption of radionuclides in soil [26]. Th in the tetravalent oxidation state forms insoluble crystalline or hydrous oxides that can perpetuate in low aqueous concentrations in natural waters and waste repository environments [27]. Hydroxide and carbonate are the two dominant ligands in the groundwater system. Hydrous Th(IV) oxides are soluble at low pH values, but the solubility decreases significantly at pH values higher than 3–4. Therefore, it was practical to use amorphous hydrous Th(IV) oxide in this study, as it is the initial solid phase precipitated under oversaturation conditions and equilibrates with the aqueous phase more rapidly [28].

[image: C:\Users\SHAHID~1\AppData\Local\Temp\Rar$DI97.320\Fig. 3 (b)  Solubility of 232Th in lanthanide concentrate (LC) and water leach purification (WLP) residue during intestinal phase.tif]

Figure 2.  232Th solubility in lanthanide concentrate and water leach purification residue during gastrointestinal phase

The solubility of 238U in the LC and WLP residue during the gastrointestinal phase is presented in Figure 3 and Figure 4. The results in Figure 3 show that based on the trendline pattern at 6 and 7 hours, the solubility of 238U in the LC during the gastric phase and gastrointestinal phase increased with respect to time. Comparing Figure 3 with Figure 4, the following results depicted that the solubility of 238U in the WLP residue increased during the gastric phase and was consistent when entering the intestinal phase. The solubility of 238U in the WLP residue was higher than that in the LC during the gastric phase. The maximum solubility of 238U in the LC and WLP residue was 0.8731 ± 0.0548 mg kg-1 during the gastric phase and 0.0558 ± 0.0164 mg kg-1 during the gastrointestinal phase. The overall result showed that the solubility of 238U in the LC and WLP residue during the gastric phase was higher than that in the intestinal phase due to the more acidic pH in the gastric phase. As stated by Oliver et al., the solubility of trace elements can be improved by lowering the pH of stomach synthetic gastric fluid [29]. This results in 238U being dissolved with acid in a chemical reaction. It can be said that 238U reacts chemically under acidic conditions compared to alkaline conditions.

Lynas’ report documented that over 99 % of 238U in the feed LC is eliminated to WLP residue and by calcination at temperatures up to 600 °C, and 238U is transformed into refractory and insoluble forms and later discarded into the WLP residue [15, 30]. The solubility of 238U is very minimal when the pH surpasses 1. Contrarily, 238U solubility is elevated by lowering the pH value. This affects the dissolution of 238U with acid in chemical reactions [31, 32]. 238U concentrations rely on the intake amount of the soil samples, volume of gastric fluid, and volume of intestinal fluid [33]. In addition, the solubility of 238U shows the amount of 238U that is dissolvable in gastrointestinal fluids, and it shows an association between concentration and solubility. Table 5 exhibits the maximum concentration of 238U in the gastrointestinal phase for high-risk cases, which was 0.0558 ± 0.0164 mg kg-1.
[image: C:\Users\SHAHID~1\AppData\Local\Temp\Rar$DI88.912\Fig. 2 (a)  Solubility of 238U in lanthanide concentrate (LC) and water leach purification (WLP) residue during gastric phase.tif]

Figure 3. Solubility of 238U in lanthanide concentrate and water leach purification residue during gastric phase

[image: C:\Users\SHAHID~1\AppData\Local\Temp\Rar$DI31.616\Fig. 2 (b)  Solubility of 238U in lanthanide concentrate (LC) and water leach purification (WLP) residue during intestinal phase.tif]

Figure 4. Solubility of 238U in lanthanide concentrate and water leach purification residue during gastrointestinal 
phase

Specific activity of 232Th and 238U in the samples
[bookmark: _Hlk521084722]Correspondingly, the maximal concentrations of 232Th in the LC and WLP residue during the intestinal phase for high-risk cases were 0.1410 ± 0.0331 mg kg-1 and 0.1621 ± 0.1190 mg kg-1, respectively. Meanwhile, the maximum concentrations of 238U in the LC and WLP residue were 0.0558 ± 0.0164 mg kg-1 and 0.0480 ± 0.0213 mg kg-1, respectively, during the intestinal phase for high-risk cases. During this study, maximum values of 232Th and 238U solubility were recorded to diagnose high-risk cases. Table 6 and Table 7 present the daily and annual intakes, as well as the daily and annual specific activities of 232Th  and 238U in the LC and WLP residue during the gastrointestinal phase. In the report of the Agency for Toxic Substances and Disease Registry (ATSDR) of 1990, the daily intake of Th from food and water ingestion was 0.0023 μg kg-1. Based on Table 6, it can be seen that the daily intake of 232Th was lower than the ATSDR reference level [34]. The 238U day-to-day intake was below the minimal risk level for intermediate-duration ingestion where the recommended oral uptakes are 0.0020 mg kg-1 day-1 [35], 0.0007 mg kg-1 day-1 [36], 0.0006 mg kg-1 day-1 [37, 38], and 0.0002 mg kg-1 day-1 [39]. 





Table 6.  The daily concentration intakes, annual concentration intakes, daily specific activity intakes, and the annual specific activity intakes of 232Th in the samples
	
	Maximum intake of 232Th

	
	Daily
	Annual

	
	(mg kg-1 day-1)
	(Bq kg-1 day-1)
	(mg kg-1 year-1)
	(Bq kg-1 year-1)

	Lanthanide concentrate (LC)
	0.260
	1.057
	95.012
	385.750

	Water leach purification (WLP)
	0.432
	1.755
	157.777
	640.576



Table 7.  The daily concentration intakes, the annual concentration intakes, the daily specific activity intakes and the annual specific activity intakes of 238U in the samples
	
	Maximum intake of 238U

	
	Daily
	Annual

	
	(mg kg-1 day-1)
	(Bq kg-1 day-1)
	(mg kg-1 year-1)
	(Bq kg-1 year-1)

	Lanthanide concentrate (LC)
	0.112
	1.3783
	40.734
	503.065

	Water leach purification (WLP)
	0.096
	1.186
	35.040
	432.749



Bioaccessibility of 232Th and 238U 
[bookmark: _Hlk521084829]A compound moving from its matrix (bioaccessibility) in the gastrointestinal tract is a dynamic process with constant changes in physiological conditions. By making use of in vitro bioaccessibility models, the digestion process in the gastrointestinal tract is imitated in a more intelligible manner by using physiological-based conditions, namely the chemical composition of digestive fluids, pH, and the usual residence times for each movement.

[bookmark: _Hlk521084913][bookmark: _Hlk521084947][bookmark: _Hlk521084991]The gastrointestinal bioaccessibility of 232Th and 238U are summarised in Table 8. Based on these observations, the values of 232Th radionuclide bioaccessibility in the LC and WLP residue were 0.14% and 0.10%, respectively. Concurrently, 238U bioaccessibility in the WLP residue during the gastric phase was significantly higher than other values. As highlighted by Oomen et al. [9, 40], pH is probably the main factor that influences the final outcome; low pH during the stomach phase causes higher bioaccessibility values. Aside from stomach pH as a digestion parameter, residence time and bile salt concentrations also influence the bioaccessibility measurements [41]. The contaminant bioaccessibility can be determined in each compartment; however, compound absorption predominantly occurs in the small intestine, which is also known as the gastrointestinal phase. Therefore, bioaccessibility is only determined in the gastrointestinal chyme [42]. Thus, the value for the gastrointestinal phase was appraised in this study. Bioaccessibility illustrates the fraction of a chemical that desorbs from the soil matrix and is accessible for intestinal absorption. 

[bookmark: _Hlk521085032][bookmark: _Hlk521085084]The 238U radionuclide in the LC had the highest bioaccessibility value (0.93%), whereas the 238U in the WLP residue yielded lower values, which was 0.70% in the gastrointestinal phase. As specified by Morrow et al. [43], solubility in the body fluids is the best predictor of U compounds that are absorbed in the human body, rather than their water solubility [44]. The maximum bioaccessibility values for 232Th and 238U were 0.14% and 0.93%, respectively, which were lower than the bioaccessible fraction, i.e. FB < 1. This verified that the value had lower internal exposure. The maximum amount of a contaminant available for absorption inside the human body is represented by FB; therefore, the oral bioavailability may not be higher than the bioaccessibility. Thus, a bioaccessibility of lower than 100 % suggested that the internal exposure to the contaminant was lower compared to the external exposure, and that the internal exposure to the contaminants was overestimated [9, 40].
Table 8.  Bioaccessibility of 232Th and 238U in lanthanide concentrate and water leach purification residue by DIN in vitro bioaccessibility model
	
	Bioaccessibility (%)

	
	232Th
	238U

	Lanthanide concentrate (LC)
	0.14
	0.93

	Water leach purification (WLP)
	0.10
	0.70





Equivalent dose and effective dose
[bookmark: _Hlk521085174][bookmark: OLE_LINK32][bookmark: OLE_LINK33]According to International Atomic Energy Agency (IAEA) [45], the committed equivalent tissue dose per unit activity for 232Th ingested by adults is 70 µSv Bq-1 for bone surfaces, 0.78 µSv Bq-1 for the kidneys, 0.74 µSv Bq-1 for the liver, and 2.0 µSv Bq-1 for red marrow. According to the ICRP [21], the committed effective dose coefficients of 232Th for workers and the public are 0.22 µSv Bq-1 and 0.23 µSv Bq-1, respectively. In contrast, the dose coefficient committed equivalent tissue dose per unit activity for 238U ingested by adults is 0.71 µSv Bq-1 for bone surfaces, 0.25 µSv Bq-1 for the kidneys, 0.096 µSv Bq-1 for the liver, and 0.075 µSv Bq-1 for red marrow. Based on the ICRP 60, the committed effective doses of 238U for workers and the public are 0.44 µSv Bq-1 and 0.45 µSv Bq-1, respectively. High committed equivalent doses and committed effective doses of 232Th and 238U that were found in the LC and WLP residue are presented in Table 9 and Table 10, respectively. The committed equivalent doses and committed effective doses of 232Th and 238U in Table 9 and Table 10 were below the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reference values.[46]. 

Table 9.  Committed equivalent doses and committed effective doses of 232Th
	
	232Th (µSv)

	
	Committed Equivalent 
Doses
	Committed Effective Doses

	
	Kidneys
	Liver
	Bone Surfaces
	Red Marrow
	Public
	Workers

	Lanthanide Concentrate (LC)
	1.204
	1.142
	108.009
	3.086
	0.355
	0.339

	Water Leach Purification (WLP)
	1.999
	1.896
	17.936
	5.125
	0.589
	0.564


Table 10.  Committed equivalent doses and committed effective doses of 238U
	
	238U (µSv)

	
	Committed Equivalent 
Doses
	Committed Effective Doses

	
	Kidneys
	Liver
	Bone Surfaces
	Red Marrow
	Public
	Workers

	Lanthanide Concentrate (LC)
	0.503
	0.193
	1.429
	0.151
	0.091
	0.089

	Water Leach Purification (WLP)
	0.433
	0.166
	1.229
	0.130
	0.078
	0.076



Conclusion
[bookmark: _Hlk521085237]In summary, the present study illustrated that bioaccessibility of 232Th and 238U in the gastric phase is higher than that in the gastrointestinal phase; the values were acquired using DIN in vitro bioaccessibility methodology. Health risk assessments depicted the estimated daily intake, committed equivalent, and effective doses of LC and WLP residue through ingestion as significantly lower than the acceptable reference level. Therefore, there were no health effects related to the radiotoxicity of the incorporated nuclides. Finally, future research is required in order to differentiate 232Th and 238U by in vivo bioavailability values measured using different biomarkers and non-identical animal models.
Acknowledgement
The authors would like to thank The National University of Malaysia for financial support under the project code DLP/2014/011.

References

1. Charalampides, G. and Vatalis, K. I. (2015). Global production estimation of rare earth elements and their environmental impacts on soils. Journal of Geoscience and Environment Protection, 3(8): 66.
2. Schmidt, G. (2013). Description and critical environmental evaluation of the REE refining plant LAMP near Kuantan/Malaysia. Radiological and non-radiological environmental consequences of the plant's operation and its wastes.
3. O'Brien, R., S. and Cooper, M. B. (1998). Technologically enhanced naturally occurring radioactive material (NORM): Pathway analysis and radiological impact. Applied Radiation and Isotopes. 49(3):227-239.
4. Sowby,  F., D.  (1965).  Radiation protection. Canadian Medical Association Journal, 92(19): 1039.
5. World Health Organization (2012). Ionizing  radiation,  health effects  and  protective  measures. Access online http://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protectiv-measures [Access online 20 April 2016]. 
6. Chaney, R. L., Mielke, H.W. and Sterrett, S. B. (1989). Speciation, mobility and bioavailability of soil lead. Environmental Geochemistry Health, 11: 105-129.
7.	Calabrese, E. J. and Stanek, E. J. (1994). Soil ingest ion issues and recommendations. Journal of Environmental Science & Health Part A, 29(3): 517-530. 
8.	Omar, N. A., Praveena, S., Mohd, A., Ahmad, Z. and Hashim, Z. (2013). Bioavailability of heavy metal in rice using in vitro digestion model. International Food Research Journal, 20(6): 2979-2985. 
9.	Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H. and Sips, A. J. A. M. (2003). Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 44(3): 0281-0287. 
10.	Monachese, M., Burton, J. P. and Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: A potential role for probiotics. Applied and Environmental Microbiology, 78(18): 6397-6404.
11.	Al-Jundi, J., Werner, E., Roth, P., Höllriegl, V., Wendler, I. and Schramel, P. (2004). Thorium and uranium contents in human urine: Influence of age and residential area. Journal of Environmental Radioactivity, 71(1): 61-70. 
12.	Van, D., W., Tom, R., Oomen, A., G., Wragg, J., Cave, Mark, Minekus, Mans, Hack, Alfons and Klinck, B. (2007). Comparison of five in vitro digestion models to in vivo experimental results: Lead bioaccessibility in the human gastrointestinal tract. Journal of Environmental Science and Health Part A, 42(9): 1203-1211.
13.	Kolo, M. T., Aziz, Siti, A. A., Khandaker, M., Uddin, A., Khandoker and Amin, Y. M. (2015). Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environmental Science and Pollution Research, 22(17): 13127-13136.
14. 	Wragg, J. and Cave, M. In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: A critical review. R&D Technical Report P5-062/TR/01 Environment Agency: pp. 1-28.
15.	National Toxics Network (2012). Rare earth and radioactive waste a preliminary waste stream assessment of the Lynas Advanced Materials Plant, Gebeng, Malaysia. 
16.	Pasquale, V., Verdoya, M. and Chiozzi, P. (2001). Radioactive heat generation and its thermal effects in the Alps–Apennines boundary zone. Tectonophysics, 331(3): 269-283. 
17.	Guo, P., Duan, T., Song, X., Xu, J. and Chen, H. (2008). Effects of soil pH and organic matter on distribution of thorium fractions in soil contaminated by rare-earth industries.  Talanta, 77(2): 624-627.
18.	International Atomic Energy Agency (2011). Radiation protection and NORM residue management in the production of rare earths from thorium containing minerals. Safety Reports Series No. 68.
19.	Langmuir, D. and Herman, J. S. (1980). The mobility of thorium in natural waters at low temperatures. Geochimica et Cosmochimica Acta, 44(11):1753-1766.
20.	Platford, R. F. and Joshi, S. R. (1989). Radionuclide partitioning across Great Lakes natural interfaces. Environmental Geology and Water Sciences, 14(3):183-186.
21.	International Commission on Radiological Protection (2012). ICRP Publication 119: Compendium of Dose Coefficients Based On ICRP Publication 60. Annal ICRP, 42(4): 2013.
22.	Johnson, J. R. and Lamothe, E. S. (1989). A review of the dietary uptake of Th. Health Physics, 56(2): 165-168.
23.	United  States  Environmental  Protection  Agency (2015).  Radionuclide basics:  Uranium. Access from https://www.epa.gov/radiation/radionuclide-basics-uranium [Access online 11 Jan 2018].
24.	Hooda, P. S., Henry, C. J. K., Seyoum, T. A., Armstrong, L., D. M. and Fowler, M. B. (2004). The potential impact of soil ingestion on human mineral nutrition. Science of the Total Environment, 333(1): 75-87.
25. 	Bondietti, E.A. (1974). Adsorption of U (+ 4) and Th (+ 4) by soil colloids. In Agronomy Abstracts, 23.
26.	Guo, P., Duan, T., Song, X. and Chen, H. (2007). Evaluation of a sequential extraction for the speciation of thorium in soils from Baotou area, Inner Mongolia. Talanta, 71(2):778-783.
27.	Reiller, P., Moulin, V., Casanova, F. and Dautel, C. (2002). Retention behaviour of humic substances onto mineral surfaces and consequences upon thorium(IV) mobility: Case of iron oxides. Applied Geochemistry, 17(12): 1551-1562.
28.	Rand, M., H., Mompean, F., J., Perrone, J. and Illemassène, M. (2008). Chemical thermodynamics of thorium. OECD Publishing, 11: 1-393
29.	Oliver, D. P., McLaughlin, M. J., Naidu, R., Smith, L. H., Maynard, E. J. and Calder, I. C. (1999). Measuring Pb bioavailability from household dusts using an in vitro model. Environmental Science & Technology, 33(24): 4434-4439.
30.	Golev, A., Scott, M., Erskine, P. D., Ali, S. H. and Ballantyne, G. R. (2014). Rare earths supply chains: Current status, constraints and opportunities. Resources Policy. 41: 52-59.
31.	Adams, W. H., Buchholz, J. R., Christenson, C. W., Johnson, G. L. and Fowler, E. B. (1974). Studies of plutonium, americium, and uranium in environmental matrices: Los Alamos Scientific Lab., North Mexico.
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