Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 238 - 248
DOI:
10.17576/mjas-2018-2202-08
ION-CONDUCTING POLYMER ELECTROLYTE FILMS BASED ON POLY
(SODIUM 4-STYRENESULFONATE) COMPLEXED WITH AMMONIUM NITRATE: STUDIES BASED ON
MORPHOLOGY, STRUCTURAL AND ELECTRICAL SPECTROSCOPY
(Filem Elektrolit Polimer Pengaliran Ion Berasaskan Kompleks
Poli(sodium 4-stirenasulfonat) dengan Amonium Nitrat: Kajian ke atas Morfologi,
Struktur dan Spektroskopi Elektrik)
Mohd Faiz Hassan*, Siti Khalijah Zainuddin, Khadijah Hilmun Kamarudin, Chan
Kok Sheng,
Mohd Aidil Adha Abdullah
School of Fundamental Sciences
Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
*Corresponding author:
mfhassan@umt.edu.my
Received: 10
July 2017; Accepted: 12 March 2018
Abstract
Solid polymer electrolytes of poly(sodium 4-styrenesulfonate) as a
polymer host and ammonium nitrate as an ionic dopant were prepared using a
single-solvent via solution casting technique. According to the X-ray diffractogram
and Fourier transmission infrared analyses, the solid electrolyte films were in
an amorphous state and the coexistence of interaction between cation NH4+
and the polymer structure agrees that the complex film was successfully prepared.
The scanning electron microscope observations revealed that the films appeared
to be rough, flat, and irregularly shaped surface. The highest ionic
conductivity (σ) of 3.16×10-4
Scm-1 was achieved at room temperature (303K) for the sample
containing 30 wt.% ammonium nitrate.
Keywords: solution cast technique, solid polymer
electrolyte, complexation, ionic conductivity
Abstrak
Elektrolit
polimer pepejal poli(sodium 4-stirenasulfonat) sebagai polimer perumah dan
ammonium nitrat sebagai dopan ionik telah dihasilkan menggunakan pelarut
tunggal melalui teknik tuangan larutan. Merujuk kepada analisa difraktogram
sinar-X dan inframerah transformasi Fourier, filem-filem elektrolit pepejal
dihasilkan dalam keadaan amorfus dan pengkompleksan di antara kation NH4+
dan struktur polimer mengesahkan filem tersebut berjaya dihasilkan. Pemerhatian
mikroskopi elektron imbasan mendedahkan filem-filem tersebut mempunyai
permukaan yang kasar, rata dan wujudnya bentuk-bentuk yang tidak seragam pada
permukaannya. Nilai tertinggi konduktiviti ionik (σ) of 3.16×10-4 Scm-1 telah diperolehi pada
suhu bilik (303K) bagi sampel yang mengandungi 30 wt.% ammonium nitrat.
Kata kunci: teknik tuangan larutan, elektrolit polimer pepejal,
pengkompleksan, konduktiviti ionik
References
1. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. and Bruce,
P. G. (2001). Ionic conductivity in crystalline polymer electrolytes. Nature, 412: 520-523.
2. Wright, P. V. (1975). Electrical conductivity in ionic
complexes of poly(ethylene oxide). British
Polymer Journal, 7:319–324.
3. Dillip, K. P., Choudhary, R. N. P. and Samantaray, B.
K. (2008). Studies of dielectric relaxation and AC conductivity behaviour of
plasticized polymer nanocomposite electrolyte. International Journal Electrochemistry Science, 3: 597-608.
4. Kim, D. W., Park, J. R. and Rhee, H. W. (1996).
Conductivity and thermal studies of solid polymer electrolytes prepared by
blending poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium
perchlorate. Solid State Ionics, 83(1-2):
49-56.
5. Wieckzorek, W. and Stevens, J. R. (1997). Impedance spectroscopy
and phase structure of polyether-poly(methyl methaacrylate)-LiCF3SO3
blend-based electrolytes. Journal of
Physical Chemistry B, 101(9):1529-1534.
6. Przyluski, J. and Wieczorek, W. (1989). Increasing the
conductivity of polymer solid electrolytes: A review. Solid State Ionics, 36(3-4): 165-169.
7.
Cherng, J. Y.,
Munshi, M. Z. A., Owens, B. B. and Smyrl, W. H. (1988). Applications of
multivalent ionic conductors to polymeric electrolyte batteries. Solid State Ionics, 28-30: 857-861.
8.
Hassan, M. F.
and Arof, A. K. (2005). Ionic conductivity in PEO-KOH polymer electrolytes and
electrochemical cell performance. Physica
Status Solidi-A, 202(13): 2494-2500.
9.
Rajendran, S.,
Sivakumar, M. and Subadevi, R. (2004). Investigations on the effect of various
plasticizers in PVA-PMMA solid polymer blend electrolytes. Materials Letters, 58(5), 641-649.
10. Choi, N. S. and Park, J. K. (2001). New polymer
electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochimica Acta, 46(10-11):
1453-1459.
11. Pandey, K., Dwivedi, M. M., Asthana, N., Singh, M. and
Agrawal, S. L. (2011). Structural and ion transport studies in (100-x)PVdF +
xNH4SCN gel Electrolyte. Materials
Sciences and Application, 2: 721-728.
12.
Zhang, J.,
Huang, X., Fu, J., Huang, Y., Liu, W. and Tang, X. (2010). Novel PEO-based
composite solid polymer electrolytes incorporated with active inorganic-organic
hybrid polyphosphazene microspheres. Materials
Chemistry and Physics, 121(3): 511-518.
13. Feng, W., Wang, J. and Wu, Q. (2005). Preparation and
conductivity of PVA films composited with decatungstomolybdovanadogermanic
heteropoly acid. Materials Chemistry and
Physics, 93(1): 31-34.
14. Ramesh, S. and Ng, H. M. (2011). An investigation on
PAN-PVC-LiTFSI based polymer electrolytes system. Solid State Ionics, 192(1): 2-5.
15. Zoghlami, O., Guettari, M. and Tajouri, T. (2017).
Study of poly(sodium-4-styrenesulfonate) behavior in water/non-solvent mixtures
by conductivity and refractive index measurements. Colloid and Polymer Science, 295(9): 1729-1739.
16. Li, J., Miao, D., Yang, R., Qu, L. and Harrington, P.
B. (2014). Synthesis of poly(sodium 4-styrenesulfonate) functionalized
graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its
application in electrochemical oxidation of 2,4-dichlorophenol. Electrochimica Acta, 125: 1-8.
17. Monterroso, S. C., Carapuca, H. M. and Dearte, A. C.
(2003). Performance of poly(styrenesulfonate)-coated thin mercury film
electrodes in the determination of lead and copper in estuarine water samples
of high salinity. Electroanalysis, 15(23-24):
1878-1883.
18. Jia, J., Cao, L., Wang, Z. and Wang, T. (2007).
Properties of poly(sodium 4-styrenesulfonate)-ionic liquid composite film and
its application in the determination of trace metals combined with bismuth film
electrode. Electroanalysis, 20: 542-549.
19. Rocha, L. S., Pinheiro, J. P. and Carapuca, H. M.
(2006). Ion-exchange voltammetry with nafion/poly(sodium 4-styrenesulfonate) mixed
coatings on mercury film electrodes: characterization studies and application
to the determination of trace metals. Langmuir,
22(19): 8241-8247.
20. Du, F. P., Wang, J. J., Tang, C. Y., Tsui, C. P.,
Zhou, X. P., Xie, X. L. and Liao, Y. G. (2012). Water-soluble graphene grafted
by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance. Nanotechnology, 23: 475704.
21. Imrea, A. W., Schönhoff, M. and Cramer, C. (2008). A conductivity
study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium
chloride) polyelectrolyte complexes. The
Journal of Chemical Physics, 128: 134905.
22. Wesp, V., Hermann, M., Schäfer, M., Hühn, J., Parak,
W. J. and Weitzel, K. M. (2016). Bombardment induced ion transport – part IV:
Ionic conductivity of ultra-thin polyelectrolyte multilayer films. Physical Chemistry Chemical Physics, 18(6):
4345-4351.
23. Kolling, T., Schlemmer, A., Pietzonka, C., Harbrecht,
B. and Weitzel, K. M. (2010). Field effects in alkali ion emitters: Transition
from Langmuir-Child to Schottky regime. Journal
of Applied Physics, 107: 014105.
24. Schulze, S., Zakel, J., Schäfer, M. and Weitzel, K. M.
(2012). Potassium ion transport through poly-para-xylylene films. IEEE Transactions on Dielectrics and
Electrical Insulation, 19: 1167-1174.
25. Overberger, C. G. and Sannes, K. N. (1974). Polymere als
reagentien fur organische synthesen. Angewandte
Chemie, 86: 139-145.
26. Cook, M. A. and Talbot, E. L. (1951). Explosive sensitivity
of ammonium nitrate-hydrocarbon mixtures. Industrial
and Engineering Chemistry, 43(5): 1098-1102.
27. Majid, S. R. and Arof, A. K. (2005). Proton-conducting
polymer electrolyte films based on acetate complexed with NH4NO3
salt. Physica B, 355(1-4): 78-82.
28. Kamarudin, K. H. and Isa, M. I. N. (2013). Structural
and DC ionic conductivity studies of carboxy methylcellulose doped with
ammonium nitrate as solid polymer electrolytes. International Journal of Physical Sciences, 8(31): 1581-1587.
29. Hendricks, S. B., Posnjak, E. and Kracek, F. C.
(1932). Molecular rotation in the solid state. The variation of the crystal structure of ammonium
nitrate with temperature. Journal of American Chemical Society, 54: 2766-2786.
30. Ferg, E. E., Levendis, D. C. and Schoening, F. R. L.
(1993). X-ray diffraction study of the orientational relation between the IV
and III phases of ammonium nitrate. Chemistry
of Materials, 5(9): 1293-1298.
31. Sorescu, D. C. and Thompson, D. L. (2001). Quantum mechanical
studies of pressure effects in crystalline ammonium dinitramide. Journal of Physical Chemistry A, 105(31):
7413-7422.
32. Wu, H. B., Chan, M. N. and Chan, C. K. (2007). FTIR characterization
of polymorphic transformation of ammonium nitrate. Aerosol Science and Technology, 41(6): 581-588.
33. Golovina, N., Nechiporrenko, G., Nemtsev, G., Zyuzin,
I., Manelis, G. B. and Lempert, D. (2009). Ammonium nitrate phase state
stabilization with small amounts of some organic compounds. Central European Journal of Energetic
Materials, 6: 45-56.
34. Joshi, J. M. and Sinha, V. K. (2006). Synthesis and
characterization of carboxymethyls chitosan grafted methacrylic acid initiated
by ceric ammonium nitrate. Journal of
Polymer Research, 13: 387-395.
35. Parvathy, P. C. and Jyothi, A. N. (2012). Synthesis, characterization
and swelling behavior of superabsorbent polymers from cassava
starch-graft-poly(acrylamide). Starch, 64:
207-218.
36.
Coates, J.
(2000). Interpretation of infrared spectra, a practical approach. in
encyclopedia of analytical chemistry, Meyers, R. A., Editor. Chichester: John
Wiley & Sons Ltd.
37. Miller, F. A. and Wilkins, C. H. (1952). Infrared
spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 24: 1253-1294.
38.
Goebbert, D. J.,
Garand, E., Wende, T., Bergmann, R., Meijer, G., Asmis, K. R. and Neumark, D.
M. (2009). Infrared spectroscopy of the microhydrated nitrate ions NO3-(H2O)1-6.
Journal of Physical Chemistry A, 113(26):
7584-7592.
39.
Suherman, H.,
Duskiardi and Irmayani. (2015). Effect of particle size and graphite loading
concentration on the electrical conductivity of graphite/epoxy composites. Paper
presented at the International Conference on Chemical, Metallurgy and Material
Science Engineering (CMMSE-2015), Pataya, Thailand.
40. Tsujimoto, Y., Matsushita, Y., Yu, S., Yamaura, K. and
Uchikoshi, T. (2015). Size dependence of structural, magnetic, and electrical
properties in corundum-type Ti2O3 nanoparticles showing
insulator-metal transition. Journal of
Asian Ceramic Societies, 3(3): 325-333.
41. Supmak, W., Petchsukand, A. and Thanaboonsombut, A.
(2008). Influence of ceramic particle sizes on electrical properties of lead
zirconate titanate (pzt)/nylon57 composites. Journal of Metals, Materials and Minerals, 18: 147-151.
42. Li, B. Q. and Lu, X. (2011). The effect of pore
structure on the electrical conductivity of Ti. Transport in Porous Media, 87(1): 179-189.
43. Li, Y., Samad, Y. A., Polychronopoulou, K., Alhassan,
S. M. and Liao, K. (2014). Highly electrically conductive nanocomposites based
on polymer-infused graphene sponges. Scientific
Reports, 4: 4652.
44. Angell, C. A. (1992). Mobile ions in amorphous solids.
Annual Reviews of Physics Chemistry, 43:
693-717.
45.
Tuller, H.
(2007). Ionic conductivity and applications. Springer Handbook of Electronic
and Photonic Materials.
46. Feng S, Greenblatt M. (1992). Preparation, characterization
and ionic conductivity of novel crystalline, microporous germanates, M3HGe7O16.xH2O,
M = NH4+, Li+, K+, Rb+,
Cs+; x = 4-6. II. Chemistry of
Materials, 4(2):462-468.
47. Kim, D. W., Ryoo, B. K., Park, J. K., Maeng, K. S. and
Hwang, T. S. (1992). Study on the ionic conductivity and mobility of liquid
polymer electrolytes containing lithium salts. Polymer Journal, 24: 509-518.
48. Braga, M. H., Murchison, A. J., Ferreira, J. A.,
Singh, P., & Goodenough, J. B. (2016). Glass-Amorphous Alkali-Ion Solid
Electrolytes and Their Performance in Symmetrical Cells, In: Energy and
Environmental Science. Energy and
Environmental Science, 9(3): 948-954.