Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 238 - 248

DOI: 10.17576/mjas-2018-2202-08

 

 

 

ION-CONDUCTING POLYMER ELECTROLYTE FILMS BASED ON POLY (SODIUM 4-STYRENESULFONATE) COMPLEXED WITH AMMONIUM NITRATE: STUDIES BASED ON MORPHOLOGY, STRUCTURAL AND ELECTRICAL SPECTROSCOPY

 

(Filem Elektrolit Polimer Pengaliran Ion Berasaskan Kompleks Poli(sodium 4-stirenasulfonat) dengan Amonium Nitrat: Kajian ke atas Morfologi, Struktur dan Spektroskopi Elektrik)

 

Mohd Faiz Hassan*, Siti Khalijah Zainuddin, Khadijah Hilmun Kamarudin, Chan Kok Sheng,

Mohd Aidil Adha Abdullah

 

School of Fundamental Sciences

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  mfhassan@umt.edu.my

 

 

Received: 10 July 2017; Accepted: 12 March 2018

 

 

Abstract

Solid polymer electrolytes of poly(sodium 4-styrenesulfonate) as a polymer host and ammonium nitrate as an ionic dopant were prepared using a single-solvent via solution casting technique. According to the X-ray diffractogram and Fourier transmission infrared analyses, the solid electrolyte films were in an amorphous state and the coexistence of interaction between cation NH4+ and the polymer structure agrees that the complex film was successfully prepared. The scanning electron microscope observations revealed that the films appeared to be rough, flat, and irregularly shaped surface. The highest ionic conductivity (σ) of 3.16×10-4 Scm-1 was achieved at room temperature (303K) for the sample containing 30 wt.% ammonium nitrate.

 

Keywords:  solution cast technique, solid polymer electrolyte, complexation, ionic conductivity

 

Abstrak

Elektrolit polimer pepejal poli(sodium 4-stirenasulfonat) sebagai polimer perumah dan ammonium nitrat sebagai dopan ionik telah dihasilkan menggunakan pelarut tunggal melalui teknik tuangan larutan. Merujuk kepada analisa difraktogram sinar-X dan inframerah transformasi Fourier, filem-filem elektrolit pepejal dihasilkan dalam keadaan amorfus dan pengkompleksan di antara kation NH4+ dan struktur polimer mengesahkan filem tersebut berjaya dihasilkan. Pemerhatian mikroskopi elektron imbasan mendedahkan filem-filem tersebut mempunyai permukaan yang kasar, rata dan wujudnya bentuk-bentuk yang tidak seragam pada permukaannya. Nilai tertinggi konduktiviti ionik (σ) of 3.16×10-4 Scm-1 telah diperolehi pada suhu bilik (303K) bagi sampel yang mengandungi 30 wt.% ammonium nitrat. 

 

Kata kunci:  teknik tuangan larutan, elektrolit polimer pepejal, pengkompleksan, konduktiviti ionik

 

References

1.       Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. and Bruce, P. G. (2001). Ionic conductivity in crystalline polymer electrolytes. Nature, 412: 520-523.

2.       Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal, 7:319–324.

3.       Dillip, K. P., Choudhary, R. N. P. and Samantaray, B. K. (2008). Studies of dielectric relaxation and AC conductivity behaviour of plasticized polymer nanocomposite electrolyte. International Journal Electrochemistry Science, 3: 597-608.

4.       Kim, D. W., Park, J. R. and Rhee, H. W. (1996). Conductivity and thermal studies of solid polymer electrolytes prepared by blending poly(ethylene oxide), poly(oligo[oxyethylene]oxysebacoyl) and lithium perchlorate. Solid State Ionics, 83(1-2): 49-56.

5.       Wieckzorek, W. and Stevens, J. R. (1997). Impedance spectroscopy and phase structure of polyether-poly(methyl methaacrylate)-LiCF3SO3 blend-based electrolytes. Journal of Physical Chemistry B, 101(9):1529-1534.

6.       Przyluski, J. and Wieczorek, W. (1989). Increasing the conductivity of polymer solid electrolytes: A review. Solid State Ionics, 36(3-4): 165-169.

7.       Cherng, J. Y., Munshi, M. Z. A., Owens, B. B. and Smyrl, W. H. (1988). Applications of multivalent ionic conductors to polymeric electrolyte batteries. Solid State Ionics, 28-30: 857-861.

8.       Hassan, M. F. and Arof, A. K. (2005). Ionic conductivity in PEO-KOH polymer electrolytes and electrochemical cell performance. Physica Status Solidi-A, 202(13): 2494-2500.

9.       Rajendran, S., Sivakumar, M. and Subadevi, R. (2004). Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Materials Letters, 58(5), 641-649.

10.    Choi, N. S. and Park, J. K. (2001). New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochimica Acta, 46(10-11): 1453-1459.

11.    Pandey, K., Dwivedi, M. M., Asthana, N., Singh, M. and Agrawal, S. L. (2011). Structural and ion transport studies in (100-x)PVdF + xNH4SCN gel Electrolyte. Materials Sciences and Application, 2: 721-728.

12.    Zhang, J., Huang, X., Fu, J., Huang, Y., Liu, W. and Tang, X. (2010). Novel PEO-based composite solid polymer electrolytes incorporated with active inorganic-organic hybrid polyphosphazene microspheres. Materials Chemistry and Physics, 121(3): 511-518.

13.    Feng, W., Wang, J. and Wu, Q. (2005). Preparation and conductivity of PVA films composited with decatungstomolybdovanadogermanic heteropoly acid. Materials Chemistry and Physics, 93(1): 31-34.

14.    Ramesh, S. and Ng, H. M. (2011). An investigation on PAN-PVC-LiTFSI based polymer electrolytes system. Solid State Ionics, 192(1): 2-5.

15.    Zoghlami, O., Guettari, M. and Tajouri, T. (2017). Study of poly(sodium-4-styrenesulfonate) behavior in water/non-solvent mixtures by conductivity and refractive index measurements. Colloid and Polymer Science, 295(9): 1729-1739.

16.    Li, J., Miao, D., Yang, R., Qu, L. and Harrington, P. B. (2014). Synthesis of poly(sodium 4-styrenesulfonate) functionalized graphene/cetyltrimethylammonium bromide (CTAB) nanocomposite and its application in electrochemical oxidation of 2,4-dichlorophenol. Electrochimica Acta, 125: 1-8.

17.    Monterroso, S. C., Carapuca, H. M. and Dearte, A. C. (2003). Performance of poly(styrenesulfonate)-coated thin mercury film electrodes in the determination of lead and copper in estuarine water samples of high salinity. Electroanalysis, 15(23-24): 1878-1883.

18.    Jia, J., Cao, L., Wang, Z. and Wang, T. (2007). Properties of poly(sodium 4-styrenesulfonate)-ionic liquid composite film and its application in the determination of trace metals combined with bismuth film electrode. Electroanalysis, 20: 542-549.

19.    Rocha, L. S., Pinheiro, J. P. and Carapuca, H. M. (2006). Ion-exchange voltammetry with nafion/poly(sodium 4-styrenesulfonate) mixed coatings on mercury film electrodes: characterization studies and application to the determination of trace metals. Langmuir, 22(19): 8241-8247.

20.    Du, F. P., Wang, J. J., Tang, C. Y., Tsui, C. P., Zhou, X. P., Xie, X. L. and Liao, Y. G. (2012). Water-soluble graphene grafted by poly(sodium 4-styrenesulfonate) for enhancement of electric capacitance. Nanotechnology, 23: 475704.

21.    Imrea, A. W., Schönhoff, M. and Cramer, C. (2008). A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes. The Journal of Chemical Physics, 128: 134905.

22.    Wesp, V., Hermann, M., Schäfer, M., Hühn, J., Parak, W. J. and Weitzel, K. M. (2016). Bombardment induced ion transport – part IV: Ionic conductivity of ultra-thin polyelectrolyte multilayer films. Physical Chemistry Chemical Physics, 18(6): 4345-4351.

23.    Kolling, T., Schlemmer, A., Pietzonka, C., Harbrecht, B. and Weitzel, K. M. (2010). Field effects in alkali ion emitters: Transition from Langmuir-Child to Schottky regime. Journal of Applied Physics, 107: 014105.

24.    Schulze, S., Zakel, J., Schäfer, M. and Weitzel, K. M. (2012). Potassium ion transport through poly-para-xylylene films. IEEE Transactions on Dielectrics and Electrical Insulation, 19: 1167-1174.

25.    Overberger, C. G. and Sannes, K. N. (1974). Polymere als reagentien fur organische synthesen. Angewandte Chemie, 86: 139-145.

26.    Cook, M. A. and Talbot, E. L. (1951). Explosive sensitivity of ammonium nitrate-hydrocarbon mixtures. Industrial and Engineering Chemistry, 43(5): 1098-1102.

27.    Majid, S. R. and Arof, A. K. (2005). Proton-conducting polymer electrolyte films based on acetate complexed with NH4NO3 salt. Physica B, 355(1-4): 78-82.

28.    Kamarudin, K. H. and Isa, M. I. N. (2013). Structural and DC ionic conductivity studies of carboxy methylcellulose doped with ammonium nitrate as solid polymer electrolytes. International Journal of Physical Sciences, 8(31): 1581-1587.

29.    Hendricks, S. B., Posnjak, E. and Kracek, F. C. (1932). Molecular rotation in the solid state. The variation of the  crystal  structure  of  ammonium  nitrate  with  temperature. Journal of American Chemical Society, 54: 2766-2786.

30.    Ferg, E. E., Levendis, D. C. and Schoening, F. R. L. (1993). X-ray diffraction study of the orientational relation between the IV and III phases of ammonium nitrate. Chemistry of Materials, 5(9): 1293-1298.

31.    Sorescu, D. C. and Thompson, D. L. (2001). Quantum mechanical studies of pressure effects in crystalline ammonium dinitramide. Journal of Physical Chemistry A, 105(31): 7413-7422.

32.    Wu, H. B., Chan, M. N. and Chan, C. K. (2007). FTIR characterization of polymorphic transformation of ammonium nitrate. Aerosol Science and Technology, 41(6): 581-588.

33.    Golovina, N., Nechiporrenko, G., Nemtsev, G., Zyuzin, I., Manelis, G. B. and Lempert, D. (2009). Ammonium nitrate phase state stabilization with small amounts of some organic compounds. Central European Journal of Energetic Materials, 6: 45-56.

34.    Joshi, J. M. and Sinha, V. K. (2006). Synthesis and characterization of carboxymethyls chitosan grafted methacrylic acid initiated by ceric ammonium nitrate. Journal of Polymer Research, 13: 387-395.

35.    Parvathy, P. C. and Jyothi, A. N. (2012). Synthesis, characterization and swelling behavior of superabsorbent polymers from cassava starch-graft-poly(acrylamide). Starch, 64: 207-218.

36.    Coates, J. (2000). Interpretation of infrared spectra, a practical approach. in encyclopedia of analytical chemistry, Meyers, R. A., Editor. Chichester: John Wiley & Sons Ltd.

37.    Miller, F. A. and Wilkins, C. H. (1952). Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 24: 1253-1294.

38.    Goebbert, D. J., Garand, E., Wende, T., Bergmann, R., Meijer, G., Asmis, K. R. and Neumark, D. M. (2009). Infrared spectroscopy of the microhydrated nitrate ions NO3-(H2O)1-6. Journal of Physical Chemistry A, 113(26): 7584-7592.

39.    Suherman, H., Duskiardi and Irmayani. (2015). Effect of particle size and graphite loading concentration on the electrical conductivity of graphite/epoxy composites. Paper presented at the International Conference on Chemical, Metallurgy and Material Science Engineering (CMMSE-2015), Pataya, Thailand.

40.    Tsujimoto, Y., Matsushita, Y., Yu, S., Yamaura, K. and Uchikoshi, T. (2015). Size dependence of structural, magnetic, and electrical properties in corundum-type Ti2O3 nanoparticles showing insulator-metal transition. Journal of Asian Ceramic Societies, 3(3): 325-333.

41.    Supmak, W., Petchsukand, A. and Thanaboonsombut, A. (2008). Influence of ceramic particle sizes on electrical properties of lead zirconate titanate (pzt)/nylon57 composites. Journal of Metals, Materials and Minerals, 18: 147-151.

42.    Li, B. Q. and Lu, X. (2011). The effect of pore structure on the electrical conductivity of Ti. Transport in Porous Media, 87(1): 179-189.

43.    Li, Y., Samad, Y. A., Polychronopoulou, K., Alhassan, S. M. and Liao, K. (2014). Highly electrically conductive nanocomposites based on polymer-infused graphene sponges. Scientific Reports, 4: 4652.

44.    Angell, C. A. (1992). Mobile ions in amorphous solids. Annual Reviews of Physics Chemistry, 43: 693-717.

45.    Tuller, H. (2007). Ionic conductivity and applications. Springer Handbook of Electronic and Photonic Materials.

46.    Feng S, Greenblatt M. (1992). Preparation, characterization and ionic conductivity of novel crystalline, microporous germanates, M3HGe7O16.xH2O, M = NH4+, Li+, K+, Rb+, Cs+; x = 4-6. II. Chemistry of Materials, 4(2):462-468.

47.    Kim, D. W., Ryoo, B. K., Park, J. K., Maeng, K. S. and Hwang, T. S. (1992). Study on the ionic conductivity and mobility of liquid polymer electrolytes containing lithium salts. Polymer Journal, 24: 509-518.

48.    Braga, M. H., Murchison, A. J., Ferreira, J. A., Singh, P., & Goodenough, J. B. (2016). Glass-Amorphous Alkali-Ion Solid Electrolytes and Their Performance in Symmetrical Cells, In: Energy and Environmental Science. Energy and Environmental Science, 9(3): 948-954.

 




Previous                    Content                    Next