Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1257 - 1265

DOI: 10.17576/mjas-2017-2106-07

 

 

 

PHOTOSTABILITY OF PLASTICIZED POLYVINYL CHLORIDE MEMBRANES: A THEORETICAL STUDY

 

(Kestabilan Foto bagi Membran Plastik Polivinil Klorida: Satu Kajian Teori)

 

Oksana Fizer1, Maksym Fizer2*, Yaroslav Studenyak1

 

1Department of Analytical Chemistry

2Department of Organic Chemistry

Faculty of Chemistry,

Uzhhorod National University, 88000 Uzhhorod, Ukraine

 

*Corresponding author:  max.fizer@uzhnu.edu.ua

 

 

Received: 7 March 2017; Accepted: 26 September 2017

 

 

Abstract

The calculation of spectral shifts in the UV-visible region, and the photostability of polyvinyl chloride membranes plasticized with 1-bromonaphthalene, dibutyl phthalate, dioctyl phthalate, o-nitrophenyl octyl ether and tricresyl phosphate, have been systematically investigated using the ZINDO/S method combined with stochastic molecular dynamics with the MMFF94 force field. A Langevin temperature bath was used for the thermostat and the simulation temperature was 298 K during the entire time of the simulation, which was set to 0.6 ns. These methods were employed to predict the molecular structure of the membranes. The absorption wavelengths and the HOMO and LUMO energies of membrane components are reported. In addition, the photostability of the membranes is discussed in the light of the absorption wavelength. Membranes plasticized with tricresyl phosphate and o-nitrophenyl octyl ether show less stability under the action of UV irradiation, as they absorb light with higher energy. Membranes plasticized with butyl and octyl esters of phthalic acid are more stable and show very similar behaviour. A membrane plasticized with 1-bromonaphthalene is likely to be the least sensitive to UV irradiation.

 

Keywords:  polyvinyl chloride, membrane, molecular dynamics, excited state, photostability

 

Abstrak

Pengiraan anjakan spektra di dalam kawasan ultralembayung-cahaya nampak dan kestabilan foto bagi membran plastik polivinil klorida bersama 1-bromonaftalena, dibutil ftalat, dioktil ftalat, o-nitrofenil oktil eter dan tricresil fosfat telah secara sistematik telah dikaji mengunakan kaedah ZINDO/S gabungan molekul dinamik stokastik bersama medan daya MMFF94. Suhu rendaman Langevin telah diguna untuk termostat dan suhu simulasi ialah 298 K bagi keseluruhan masa simulasi, iaitu di tetapkan pada 0.6 ns. Kaedah ini dibangunkan untuk meramal struktur molekul membran berkenaan. Panjang gelombang serapan dan tenaga HOMO dan LUMO membran dilapor. Tambahan lagi, kestabilan foto bagi membran di bincang dari aspek panjang gelombang serapan. Membran plastik bersama tricresil fosfat dan o-nitrofenil oktil eter menunjukkan kestabilan yang rendah terhadap penyinaran UV sebagaimana ia menyerap cahaya pada tenaga yang tinggi. Membran plastik bersama butil dan oktil ester asid ftalik adalah lebih stabil dan menunjukkan sifat yang sama. Membran plastik bersama 1-bromonaftalena merupakan membran paling kurang sensitif terhadap penyinaran UV.

 

Kata kunci:  polivinil klorida, membran, molekul dinamik, keadaan teruja, kestabilan foto

 

References

1.       Mikhelson, K. N. (2013). Ion-selective electrodes. Springer, Berlin: pp. 1 – 7.

2.       Dimeski, G., Badrick T. and St John, A. (2010). Ion selective electrodes (ISEs) and interferences – A review. Clinica Chimica Acta, 411 (5 – 6): 309 – 317.

3.       Radu, A., Radu, T., McGraw, C., Dillingham, P., Anastasova-Ivanova, S. and Diamond, D. (2013). Ion selective electrodes in environmental analysis. Journal of Serbian Chemical Society, 78(11): 1729 – 1761.

4.       Yan, R., Qiu, Sh., Tong, L. and Qian, Y. (2016). Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs. Chemical Speciation & Bioavailability, 28(1 – 4): 72 – 77.

5.       Thakur, V. K. and Thakur, M. K. (2015). Handbook of polymers for pharmaceutical technologies, processing and applications (Vol. 2). Scrivener Publishing LLC, USA: p. 211.

6.       Wypych, G. (2015). PVC degradation and stabilization. 3rd Edition. ChemTec Publishing, Toronto: pp. 167 – 203.

7.       Al Ani K. E. and Ramadhan, A. E. (2010). Plasticization effect on the photodegradation of poly (4-chlorostyrene) and poly(4-bromostyrene) films. Materials Sciences and Applications, 1 (6): 358 – 368.

8.       Ramadhan, A. E. (2015). Effects of added phthalate plasticizers on photodegradation of irradiated poly(α-methylstyrene) films. Journal of Polymer Engineering, 35(2): 159 – 167.

9.       Hassan, M. A., Kamarudin, S. K. and Loh, K. S. (2016). Structural study of reduced graphene oxide/polypyrrole composite as methanol sensor in direct methanol fuel cell. Malaysian Journal of Analytical Sciences, 20(4): 965 – 970.

10.    Bevziuk, K., Chebotarev, A., Snigur, D., Bazel, Ya., Fizer, M. and Sidey, V. (2017). Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R. Journal of Molecular Structure, 1144: 216 – 224.

11.    Arifin, K., Daud, W. R. W. and Kassim, M. B. (2016). Molecular and electronic structures of a new ruthenium-tungsten bimetallic complex using density functional theory calculations. Malaysian Journal of Analytical Sciences, 20(4): 946 – 954.

12.    Fizer, M., Sukharev, S., Slivka, M., Mariychuk, R. and Lendel, V. (2016). Preparation of bisthiourea and 5-Amino-4-benzoyl-1,2,4-triazol-3-thione complexes of copper(II), nickel and zinc and their biological evolution. Journal of Organometallic Chemistry, 804: 6 – 12.

13.    Fizer, M., Sidey, V., Tupys, A., Ostapiuk, Y., Tymoshuk, O. and Bazel, Y. (2017). On the structure of transition metals complexes with the new tridentate dye of thiazole series: Theoretical and experimental studies. Journal of Molecular Structure, 1149: 669 – 682.

14.    Praveen, P. L. and Ojha, D. P. (2012). Effect of substituents on electronic spectral shifts and phase stability of liquid crystalline biphenylcyclohexane molecules – A theoretical approach. Molecular Crystals and Liquid Crystals, 557(1): 206 – 216.

15.    Praveen, P. L. and Ojha, D. P. (2014). Effect of molecular interactions and end chain length on ultraviolet absorption behavior and photo stability of alkoxycinnamic acids: Theoretical models of liquid crystal. Journal of Molecular Liquids, 197: 106 – 113.

16.    Fizer, O. I. and Studenyak, Y. I. (2014). The behavior of PVC-modified membrane sensors in surfactants solutions. Scientific Bulletin of the Uzhgorod University. Series Chemistry, 31(1): 43 – 48.

17.    Fizer, O. І. and Studenyak, Y. I. (2015). Potentiometric titration of anionic surfactants in household object. Naukovij vìsnik Užgorods’kogo unìversitetu. Serìâ Hìmìâ, 34(2): 55 – 58.

18.    Attard, P. (2002). Stochastic molecular dynamics: A combined Monte Carlo and molecular dynamics technique for isothermal simulations. Journal of Chemical Physics, 116(22): 9616 – 9619.

19.    Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17 (5 – 6): 490 – 519.

20.    Kotzian, M., Rösch, N. and Zerner, M. C. (1992). Intermediate neglect of differential overlap spectroscopic studies on lanthanide complexes. Theoretica Chimica Acta, 81(4): 201 – 222.

21.    Ren, P. and Ponder, J. W. (2003). Polarizable atomic multipole water model for molecular mechanics simulation. The Journal of Physical Chemistry B, 107(24): 5933 – 5947.

22.    Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(1): 73 – 78.

23.    Allouche, A. R. (2011). Gabedit – A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1): 174 – 182.

24.    Humphrey, W., Dalke, A. and Schulten, K. (1996). VMD – visual molecular dynamics. Journal of Molecular Graphics, 14(1): 33 – 38.

25.    Jmol 14.4.3. (2016). Jmol: An open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

26.    National Institute of Standards and Technology (2017). NIST Chemistry WebBook, SRD 69. http://webbook.nist.gov/cgi/cbook.cgi?ID=C90119&Units=SI&Mask=400#UV-Vis-Spec. [Access online 28 January 2017].

27.    National Institute of Standards and Technology (2017). NIST Chemistry WebBook, SRD 69. http://webbook.nist.gov/cgi/cbook.cgi?ID=C84742&Mask=400#UV-Vis-Spec. [Access online 28 January 2017].

 




Previous                    Content                    Next