Malaysian
Journal of Analytical Sciences Vol 21 No 6 (2017): 1257 - 1265
DOI:
10.17576/mjas-2017-2106-07
PHOTOSTABILITY
OF PLASTICIZED POLYVINYL CHLORIDE MEMBRANES: A THEORETICAL STUDY
(Kestabilan Foto bagi Membran Plastik
Polivinil Klorida: Satu Kajian Teori)
Oksana Fizer1, Maksym Fizer2*,
Yaroslav Studenyak1
1Department of Analytical Chemistry
2Department of Organic Chemistry
Faculty of
Chemistry,
Uzhhorod
National University, 88000 Uzhhorod, Ukraine
*Corresponding author:
max.fizer@uzhnu.edu.ua
Received: 7
March 2017; Accepted: 26 September 2017
Abstract
The calculation of spectral shifts in
the UV-visible region, and the photostability of polyvinyl chloride membranes
plasticized with 1-bromonaphthalene, dibutyl phthalate, dioctyl phthalate, o-nitrophenyl
octyl ether and tricresyl phosphate, have been systematically investigated
using the ZINDO/S method combined with stochastic molecular dynamics with the
MMFF94 force field. A Langevin temperature bath was used for the thermostat and
the simulation temperature was 298 K during the entire
time of the simulation, which was set to 0.6 ns. These methods were
employed to predict the molecular structure of the membranes. The absorption
wavelengths and the HOMO and LUMO energies of membrane components are reported.
In addition, the photostability of the membranes is discussed in the light of
the absorption wavelength. Membranes plasticized with tricresyl phosphate and o-nitrophenyl octyl ether show less
stability under the action of UV irradiation, as they absorb light with higher
energy. Membranes plasticized with butyl and octyl esters of phthalic acid are
more stable and show very similar behaviour. A membrane plasticized with
1-bromonaphthalene is likely to be the least sensitive to UV irradiation.
Keywords: polyvinyl chloride, membrane, molecular
dynamics, excited state, photostability
Abstrak
Pengiraan anjakan
spektra di dalam kawasan ultralembayung-cahaya nampak dan kestabilan foto bagi
membran plastik polivinil klorida bersama 1-bromonaftalena, dibutil ftalat,
dioktil ftalat, o-nitrofenil oktil eter dan tricresil fosfat telah
secara sistematik telah dikaji mengunakan kaedah ZINDO/S gabungan molekul
dinamik stokastik bersama medan daya MMFF94. Suhu rendaman Langevin telah
diguna untuk termostat dan suhu simulasi ialah 298 K bagi keseluruhan masa
simulasi, iaitu di tetapkan pada 0.6 ns. Kaedah ini dibangunkan untuk meramal
struktur molekul membran berkenaan. Panjang
gelombang serapan dan tenaga HOMO dan LUMO membran dilapor. Tambahan lagi,
kestabilan foto bagi membran di bincang dari aspek panjang gelombang serapan.
Membran plastik bersama tricresil fosfat dan o-nitrofenil oktil eter
menunjukkan kestabilan yang rendah terhadap penyinaran UV sebagaimana ia
menyerap cahaya pada tenaga yang tinggi. Membran plastik bersama butil dan
oktil ester asid ftalik adalah lebih stabil dan menunjukkan sifat yang sama.
Membran plastik bersama 1-bromonaftalena merupakan membran paling kurang
sensitif terhadap penyinaran UV.
Kata kunci: polivinil klorida, membran, molekul dinamik, keadaan
teruja, kestabilan foto
References
1.
Mikhelson, K. N.
(2013). Ion-selective electrodes. Springer, Berlin: pp. 1 – 7.
2.
Dimeski,
G., Badrick T. and St John, A. (2010). Ion selective electrodes (ISEs) and
interferences – A review. Clinica Chimica
Acta, 411 (5 – 6): 309 – 317.
3.
Radu,
A., Radu, T., McGraw, C., Dillingham, P., Anastasova-Ivanova, S. and Diamond,
D. (2013). Ion selective electrodes in environmental analysis. Journal of Serbian Chemical Society,
78(11): 1729 – 1761.
4.
Yan,
R., Qiu, Sh., Tong, L. and Qian, Y. (2016). Review of progresses on clinical
applications of ion selective electrodes for electrolytic ion tests: from
conventional ISEs to graphene-based ISEs. Chemical
Speciation & Bioavailability, 28(1 – 4): 72 – 77.
5.
Thakur, V. K. and Thakur, M. K. (2015).
Handbook of polymers for pharmaceutical technologies, processing and
applications (Vol. 2). Scrivener Publishing LLC, USA: p. 211.
6.
Wypych,
G. (2015). PVC degradation and stabilization. 3rd Edition. ChemTec
Publishing, Toronto: pp. 167 – 203.
7.
Al
Ani K. E. and Ramadhan, A. E. (2010). Plasticization effect on the
photodegradation of poly (4-chlorostyrene) and poly(4-bromostyrene) films. Materials Sciences and Applications, 1
(6): 358 – 368.
8.
Ramadhan,
A. E. (2015). Effects of added phthalate plasticizers on photodegradation of
irradiated poly(α-methylstyrene) films. Journal
of Polymer Engineering, 35(2): 159 – 167.
9.
Hassan,
M. A., Kamarudin, S. K. and Loh, K. S. (2016). Structural study of reduced
graphene oxide/polypyrrole composite as methanol sensor in direct methanol fuel
cell. Malaysian Journal of Analytical
Sciences, 20(4): 965 – 970.
10.
Bevziuk,
K., Chebotarev, A., Snigur, D., Bazel, Ya., Fizer, M. and Sidey, V. (2017).
Spectrophotometric and theoretical studies of the protonation of Allura Red AC
and Ponceau 4R. Journal of Molecular
Structure, 1144: 216 – 224.
11.
Arifin,
K., Daud, W. R. W. and Kassim, M. B. (2016). Molecular and electronic
structures of a new ruthenium-tungsten bimetallic complex using density
functional theory calculations. Malaysian
Journal of Analytical Sciences, 20(4): 946 – 954.
12.
Fizer,
M., Sukharev, S., Slivka, M., Mariychuk, R. and Lendel, V. (2016). Preparation
of bisthiourea and 5-Amino-4-benzoyl-1,2,4-triazol-3-thione complexes of
copper(II), nickel and zinc and their biological evolution. Journal of Organometallic Chemistry,
804: 6 – 12.
13.
Fizer,
M., Sidey, V., Tupys, A., Ostapiuk, Y., Tymoshuk, O. and Bazel, Y. (2017). On
the structure of transition metals complexes with the new tridentate dye of
thiazole series: Theoretical and experimental studies. Journal of Molecular Structure, 1149: 669 – 682.
14.
Praveen,
P. L. and Ojha, D. P. (2012). Effect of substituents on electronic spectral
shifts and phase stability of liquid crystalline biphenylcyclohexane molecules
– A theoretical approach. Molecular Crystals
and Liquid Crystals, 557(1): 206 – 216.
15.
Praveen, P. L. and Ojha, D. P. (2014). Effect
of molecular interactions and end chain length on ultraviolet absorption
behavior and photo stability of alkoxycinnamic acids: Theoretical models of liquid crystal. Journal of Molecular
Liquids, 197: 106 –
113.
16.
Fizer,
O. I. and Studenyak, Y. I. (2014). The behavior of PVC-modified membrane
sensors in surfactants solutions. Scientific
Bulletin of the Uzhgorod University. Series Chemistry, 31(1): 43 – 48.
17.
Fizer, O. І. and Studenyak, Y. I. (2015). Potentiometric titration of anionic
surfactants in household object. Naukovij vìsnik Užgorods’kogo unìversitetu. Serìâ Hìmìâ, 34(2): 55 –
58.
18.
Attard, P. (2002). Stochastic molecular
dynamics: A combined Monte Carlo and molecular dynamics technique for
isothermal simulations. Journal of
Chemical Physics, 116(22): 9616 – 9619.
19.
Halgren, T. A. (1996). Merck molecular force
field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17
(5 – 6): 490 – 519.
20.
Kotzian, M., Rösch, N. and Zerner, M. C.
(1992).
Intermediate neglect of
differential overlap spectroscopic studies on lanthanide complexes. Theoretica Chimica Acta, 81(4): 201 –
222.
21.
Ren, P. and Ponder, J. W. (2003). Polarizable atomic
multipole water model for molecular mechanics simulation. The Journal of Physical Chemistry B, 107(24): 5933 – 5947.
22.
Neese, F. (2012). The ORCA program system. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 2(1): 73 – 78.
23.
Allouche, A. R. (2011). Gabedit – A graphical
user interface for computational
chemistry softwares. Journal of Computational Chemistry, 32(1): 174 – 182.
24.
Humphrey, W., Dalke, A. and Schulten, K.
(1996). VMD – visual molecular dynamics. Journal
of Molecular Graphics, 14(1): 33 – 38.
25.
Jmol 14.4.3. (2016). Jmol: An open-source Java
viewer for chemical structures in 3D. http://www.jmol.org/.
26.
National
Institute of Standards and Technology (2017). NIST Chemistry WebBook, SRD 69. http://webbook.nist.gov/cgi/cbook.cgi?ID=C90119&Units=SI&Mask=400#UV-Vis-Spec.
[Access online 28 January 2017].
27.
National
Institute of Standards and Technology (2017). NIST Chemistry WebBook, SRD 69.
http://webbook.nist.gov/cgi/cbook.cgi?ID=C84742&Mask=400#UV-Vis-Spec.
[Access online 28 January 2017].