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Abstract

In this study, newly developed copper modified CN composites were prepared and tested as a fluorescence sensor for detection
of nitrate ions (NO5"). The structure and chemical properties of CN and copper modified CN composites were investigated via X-
ray diffraction (XRD), Fourier transform infra-red (FTIR), diffuse reflectance ultraviolet-visible (DR UV-Vis) and fluorescence
spectroscopies. Three emission sites represented as C=N, C=0 and C-N moieties were suggested to contribute as sensing sites in
CN and copper modified CN composites. The sensing capabilities of CN and copper modified CN composites toward NO5 in the
range of 300 to 1800 uM were determined via.a quenching technique. The quenching efficiencies (Ksy) of CN and copper
modified CN composites were obtained from the Stern-Volmer plot. Among three emission peaks of CN, C=N sites were found
to be the most sensitive site having the strongest interaction with NO5". By addition of Cu(0.5 mol%), the Ksy of CN was
improved from 2.11 x 10 to 5.27 x 10:* uM™". This study showed that with the addition of copper as modifier, the performance
of CN can be improved and the composite can be used as potential fluorescence sensor for the detection of NO3™.
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Abstrak

Dalam kajian ini, karbon nitrida terubah suai kuprum yang baru telah disediakan dan diuji sebagai sensor pendafluor untuk
mengesan ion nitrat (NO;'). Struktur dan sifat kimia bagi CN telah disiasat melalui pembelauan sinar-X (XRD), transformasian
infra-merah Fourier (FTIR), spektroskopi pantulan serakan ultralembayung-cahaya nampak (DR UV-Vis) dan spektroskopi
pendafluor:. Tiga tapak pelepasan diwakili sebagai moiti C=N, C=0O dan C-N telah dicadangkan untuk menyumbang sebagai
tapak penderiaan. CN dan komposit CN terubah suai kuprum. Keupayaan penderiaan CN dan komposit CN terubah suai kuprum
terhadap NO;™ dalam lingkungan 300 hingga 1800 uM telah ditentukan melalui teknik pelindapan. Kecekapan pelindapan (Kgy)
bagi CN dan komposit CN terubah suai kuprum telah diperoleh daripada plot Stern-Volmer. Di antara tiga tapak pelepasan CN,
tapak C=N telah ditemui menjadi tapak yang paling sensitif dan mempunyai interaksi paling kuat dengan NO;". Dengan
penambahan Cu(0.5 mol%), nilai Ky, bagi CN telah bertambah baik daripada 2.11 x 10™* kepada 5.27 x10* pM™'. Kajian ini
menunjukkan bahawa dengan penambahan kuprum sebagai pengubahsuai, prestasi CN boleh ditingkatkan dan komposit tersebut
boleh digunakan sebagai potensi sensor pendafluor untuk mengesan NO;'.

Kata kunci: karbon nitrida terubah suai kuprum, sensor pendafluor, ion nitrat
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Introduction

Nitrate (NOy") is a widespread contaminant of groundwater which can be easily detected in the environment and
cause hazard to human health. The NOj’ is largely used for food preservative, drinking water and fertilizing agents
[1, 2]. Excessive consuming of food and drinking water containing high level of NO3™ can cause severe risk to
human health especially infants. Human may metabolize NO;™ in blood and finally transform it into carcinogenic
nitrosamine causing the condition known as methemoglobinemia or also called as baby blue syndrome [3, 4]. In
addition, it has been reported that the healthy human urine range of NOj™ is in the range of 300 to 1800 uM [5].
Therefore, determination of NOj™ is an important aspect to human health and environment. Griess reagent has been
used widely for detection of NO; ion. Basically, Griess reaction involved several steps starting from reduction of
NO;™ to NO; ™ ion by using vanadium (III) chloride [6]. The mixture was subsequently reacted with=sulfanilamide
and N-(1-naphtyl) ethylenediamine to produce pink coloured azo dye product which strongly absorbed light at 540
nm [5, 7-9]. However, it presents several disadvantages such as using high concentration of hazardous reagent in the
reaction, complicated detection procedure and cannot be reused [10]. Thus, development of reusable and sensitive
sensor for detection of NO; ion is highly required.

Recently, carbon nitride (CN) has become a current interest because of its unique-properties such as non-toxicity,
low cost, high photoluminescence intensity [11] and good photostability [12]. CN is a graphite like layered material
where s-triazine (C;N;) or tri-s-triazine (C¢N5) units connected with amino groups (-NH/NH,) are held together
through hydrogen bonds between the amino groups [13, 14]. The principal application of the CN in the environment
is mainly in photocatalysis for photodegradation of environmental pollutants-[15, 16], while only few studies have
been reported on its application in optical detection of environmental pollutant [17-22]. For instances, the CN has
been reported to act as fluorescence sensor for detection of Cu®" and Fe® ions [16-18] and N-Nitrosopyrrolidine
[19]. Recently, metal-free CN was used as a fluorescence chemical sensor for detection of NO;3™ [23]. Unfortunately,
CN alone still has low sensitivity towards the detection of the NOj;.. Therefore, further investigation is still required
to improve the performance of the CN.

The objective of this study is to design a sensitive sensing material based CN by improving the sensing sites of the
CN for detection of the NOj™. In order to improve the sensing sites of the CN, copper species was used as the
modifier. Copper based material has attracted a'great interest due to its low cost as compared to noble metals such
as Au, Pt, or Pd. It has been reported that.the amino groups from the CN can interact with copper ion to form a
stable complex due to the strong coordination force between the amino group and copper ion [24]. Herein, this study
reported the modification of the CN. by using copper species prepared by impregnation followed by a reduction
method. The synthesized composites were.demonstrated to show better sensing performances towards the NO;'.

Materials and Methods

Material preparation

CN was prepared by using.urea (CON,H,, Sigma-Aldrich, 98%) as precursor via thermal polymerization technique
at 823 k for 4 hours [21, 25].<As for the preparation of composites, certain amount of Cu(acac), (Cu(CsH;0,),,
Merck, 99.99%) was dissolved in ethanol and mixed with CN via an impregnation process. The mixture was heated
up to 363 K until all. the ethanol was evaporated. The obtained solid was underwent thermal hydrogenation process
at 473 K for 2 hours under hydrogen flow of 5 ml/min to produce copper species modified CN composites.
Composites were.denoted as Cu(x)/CN composites where x showed the mol ratio of Cu to CN, which were fixed at
0.1 and 0.5 mol%. As a reference, the Cu(acac), was heated under thermal hydrogenation process at 473 K or 2
hours to obtain Cu metal.

Characterizations

Properties of CN and Cu(x)/CN composites were investigated by several instruments. The structure of the CN and
its composite was identified by using powder X-ray difractometer recorded with a Bruker D8 Advanced using Cu
Ko irradiation (A = 1.5406 A). The surface area of CN and its composites was confirmed by using Brunauer-
Emmett-Teller (BET) equation obtained from a Quantachrome NOVA TOUCH LX". The functional groups present
in the CN and its composites were recorded by using a Nicolet iS50 spectroscopy by mixing the samples with
potassium bromide as a pellet. The diffuse reflectance UV-Visible (DR UV-Vis) spectra were recorded by using
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Shimadzu UV-Vis spectrophotometry (UV-2600) in the range of 250 — 800 nm. The emission spectra were
determined via JASCO FP-8500 fluorescence spectrophotometer at room temperature.

Quenching test

The interactions between the CN and its composites with NO;™ were studied via fluorescence spectroscopy at room
temperature. The quenching tests were carried out by exposing various concentrations of NO;” in the range of 300 to
1800 uM onto the CN and its composites. The various concentrations of NOj3 (10 uL) were introduced into the
sample (0.05 g) and the emission spectra were measured at excitation wavelengths of 277, 320 and 370 nm. The
interaction between the samples and the NO;™ can be observed from the changes in the emission intensity measured
at each excitation wavelength and evaluated from the Stern-Volmer plot.

Results and Discussion

Characterization of CN and Cu(x)/CN composites

To investigate the chemical structure and optical properties of CN and its composites, XRD, FTIR, DR UV-Vis and
fluorescence spectroscopies measurements were performed. The XRD patterns of CN and its composites are given
in Figure 1. The XRD pattern of the prepared Cu metal is also shown as a reference.'Cu.metal gave three obvious
peaks at 26 of 44.3, 50.4 and 74.1° as the characteristics of copper (0) species (JCPDS no. 00-004-0836), which
pattern was virtually the same as the reported one [26]. On the other hand, the CN exhibited two diffraction peaks at
26 of 13.10 and 27.30°, corresponding to in-planar repeating units and-the distance between the nitride pores,
respectively [20, 23, 27-30]. The Cu(x)/CN composites showed similar diffraction patterns to those of the CN,
suggesting that the added Cu might be too low to be detected by XRD or the Cu'was highly dispersed on the CN.
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Figure 1. XRD patterns of Cu, CN and Cu(x)/CN composites

The FTIR spectra of CN and the Cu(x)/CN composites are shown in Figure 2. The CN showed vibration bands at
around 3300 — 3400 cm™ that can be attributed to the overlapping bands of primary and secondary amine, v(N-H)
and v(O-H) groups [21-24, 31-35]. The stretching modes of v(C-N) heterocycles were observed at 1200 —1700 cm™,
while the heterocyclic tri-s-triazine (CgN;) was found at around 809 c¢m™. Even though the presence of amino
groups in the synthesized CN is difficult to be analysed by FTIR spectroscopy, it has been reported by XPS analysis
[31]. It was obvious that the Cu(x)/CN composite exhibited almost similar peaks to those of the CN, which
indicated that the structure of CN was kept to be almost the same even after addition of copper species on the
samples, similar to other reported literatures [24, 32].
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Figure 2. FTIR spectra of CN and Cu(x)/CN composites

Figure 3 shows N, adsorption-desorption isotherms of CN and its composites. It was obvious that they exhibited
type III isotherm, which referred to nonporous solids. There were no changereccurred on the isotherm when the Cu
species were added onto the samples, suggesting that the added copper species did not affect the physical properties
of the CN. The BET specific surface areas of CN, Cu (0.1)/CN, and Cu (0.5)/CN were measured to be 91, 93 and 56
m’g”, respectively. Addition of 0.1 mol% of Cu did not affect:much the specific surface area, but the addition of 0.5
mol% of Cu significantly decreased the specific surface area. The decrease in the surface area has been also
reported when Cu(acac), was dispersed on the CN [32].
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Figure 3. N, adsorption-desorption of (a) CN, (b) Cu(0.1)/CN and (c) Cu(0.5)/CN composites
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Figure 4. DR UV-Vis spectra of CN and Cu(x)/CN composites

The optical.properties of CN and its composites were investigated by DR UV-Vis spectroscopy. As shown in Figure
4, CN and its composites exhibited three strong absorption bands at 277, 320 and 370 nm. The peak at 277 nm was
corresponded to C=N groups (z-7*) in the conjugated aromatic triazine ring [20, 23, 31, 32], while the peak at 320
nm would be related to the presence of C=0O moiety (z-7* and n-7*) due to the low condensation during the
polymerization process of urea [30, 32, 36]. The peak at 370 nm was originated from the C-N terminal moiety (n-
7*) [20, 23, 31, 32]. The Cu(x)/CN composites also gave similar absorption peaks to the CN, but with increased
absorption peak intensities below 350 nm. The increase was more prominent for Cu(x)/CN composite with higher
Cu loading amount. This would be the evidence of the presence of Cu on the samples since the peaks were
contributed from the ligand to metal charge transfer (LMCT) transition between Cu and oxygen species in the
composites [37].
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The fluorescence properties of CN and Cu(x)/CN composites were studied by using fluorescence spectroscopy.
Similar to the DR UV-Vis spectra, CN and its composites also shows three excitation peaks at 277, 320 and 370 nm,
which referred to C=N, C=0 and C-N terminal groups, respectively. On the other hand, only one emission peak was
observed when CN and its composites were excited at 277, 320 or 370 nm [23]. As can be seen in Figure 5 (a), the
intensity of the excitation spectra of the composites decreased with the increase in the loading amount of Cu
species. This is believed due to certain interactions occurred between Cu species and CN. The same phenomenon
also can be monitored from the emission spectra of CN and its composites at 455 nm for all excitation wavelengths,
as can be seen in Figure 5 (b), (¢) and (d), which illustrates the emission spectra of CN and its composites when
excited at 277, 320 and 370 nm, respectively.
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Figure 5. (a) Excitation.spectra of CN and Cu(x)/CN composites monitored at emission wavelength of 455 nm, and
emission spectra of CN and Cu(x)/CN composites monitored at excitation wavelengths of (b) 277, (c) 320
and(e) 370 nm

Sensing performance of CN and Cu(x)/CN composites toward NO; ion

The fluorescence responses of CN and its composites to various concentrations of NO; (300-1800 uM) were
studied by using a quenching technique. Since the CN and its composites have three emission sites, which are C=N,
C=0 and C-N terminal groups, it is important to determine which emission site has the strongest interaction to NO5'.
Figure 6 shows the emission spectra of CN at 277, 320 and 370 nm before and after addition of various
concentrations of NOs. Based on the spectra, it is clearly seen that the intensity of CN decreased with the increase of
the NO;™ concentration at all sensing sites, suggesting that the NO;" ion interacted with C=N, C=0 and C-N terminal
sites and acted as a quenching agent to deactivate the emission sites of the CN. It is believed that there is an
electrostatic interaction between the CN and its composites with NO;™ due to different charge between the sensing
sites of the sensor samples and the NO;™ [38]. The same phenomena also can be observed for Cu(0./)/CN and
Cu(0.5)/CN samples, which spectra are shown in Figures 7 and 8, respectively.
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Figure 6. Emission spectra of CN in the absence and presence of NO;  with various concentrations, monitored at

excitation wavelength of (a) 277, (b) 320 and (c) 370 nm
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Figure 7. Emission spectra of Cu (0.1)/CN in the absence and presence of NO; with various concentrations,
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Figure 8. Emission spectra of Cu (0.5)/CN in the absence and presence of NOj; with various concentrations,
monitored at excitation wavelength of (a) 277, (b) 320 and (c) 370nm

In order to determine the most sensitive sensing sites on the CN and its.composites, quenching efficiencies at each
sensing sites of the samples need to be calculated. The quenching efficiencies of the sensor can be determined by
the relationship between the reduced intensity and the added concentration of NO;", which is reflected by the Stern-
Volmer equation:

Iyl =Kg [O] + 1 (D

where [ is the fluorescence intensity of sensor in the absence of quencher (NOj3') and / is the fluorescence intensity
of sensor in the presence of quencher (NOj3), Kgy is the Stern-Volmer constant which measures the efficiency of
quenching and [Q] is the concentration of NO;".

Among the three sensing sites of the CN and its composites, which are C=N, C=0 and C-N terminal groups, the
C=N showed the strongest interaction.between the samples and the NO;™ ion. The Stern-Volmer plots of the CN and
Cu(x)/CN composites for the:C=N sites monitored at excitation wavelength of 277 nm are shown in Figure 9. The
CN gave almost linear plot to.sense NO;™ ion up to 1800 uM. On the other hand, the Cu (0.7)/CN composite and the
Cu(0.5)/CN composites gave a linear plot up to 1500 and 900 uM, respectively. When the added concentration was
higher than these concentration levels, saturation was observed and this was more prominently observed on the
Cu(0.5)/CN. The addition of Cu was found to give lower concentration range detection, which may be caused by the
blocking of the sensing sites by the added Cu species. However, it is clear that the addition of Cu improved the
quenching efficiency of the CN. The calculated Ky values of CN, Cu(0./)/CN and Cu(0.5)/CN composites at
excitation 'wavelength of 277 nm were 2.11 x10™, 2.50 x10™* and 5.27 x10™* uM™, respectively, as summarized in
Figure 10. Although detection range on the Cu(0.5)/CN composite was lower, obviously the Cu(0.5)/CN composite
showed almost twofold higher Ky, value as compared to the unmodified CN. It is revealed that the presence of
copper species improved the performance of CN for the detection of NO;™ ion. Therefore, it can be concluded that
Cu(x)/CN composites were potential to be used as a fluorescence sensor for detection of NOj3™ ion.
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Figure 9. Stern-Volmer plots between the relative emission intensity of CN and:Cu(x)/CN and the concentration of
NOj’, monitored at excitation wavelength of C=N sites (277 nm)
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Figure 10. The Kgy values for CN and Cu(x)/ CN for all the emission sites

Conclusion

The CN was successfully synthesized via a thermal polymerization technique, while the Cu(x)/CN composites were
prepared by impregnation of copper species, followed by thermal reduction process. XRD patterns and FTIR spectra
did not show any. changes, suggesting that the structural properties of CN were not influenced by the addition of
copper species.onto CN. On the other hand, the DR UV-Vis spectra showed the presence of copper species in the
composites in the area below 350 nm, which was due to the LMCT between the copper species and CN. The CN
and Cu(x)/CN composites exhibited three emission sites, which are C=N, C=0 and C-N sites. Among all these
emission sites, the C=N site showed the most favorable sensing site for detection of NO;™ ion. The quenching
efficiencies were represented by the K values, which values for CN, Cu(0.7)/CN and Cu(0.5)/CN composites were
2.11 x10™ 2.50 x10™ and 5.27 x10™* uM™', respectively. Modification with copper species (0.5 mol%) onto the CN
improved the quenching efficiency up to two times higher than the unmodified CN. This work clearly demonstrated
that the Cu(x)/CN composites can be used as a potential fluorescence sensor for detection of NO5 ion.
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