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Abstract

N-glycans are biologically important oligosaccharides associated with the asparagine residue that may exist in protein-bound or
unbound forms in all eukaryotes (including yeasts) and some bacteria. The- core structure of these oligosaccharides is based on
the trimannosyl chitobiose structure resulting from cellular N-glycosylation. Preparative-scale amounts of these oligosaccharides
are important for chemical, structural and functional studies due to their biological significance. Therefore, we explored a
biochemical approach of oligosaccharide preparation using mutant-derived monoglucosylated lipid-linked oligosaccharides
(LLOs) required for the assembly of N-linked glycoproteins and non-monoglucosylated free-oligosaccharides (fOSs) from
misfolded N-linked glycoproteins using an N-glycosylation (alg) mutant of Saccharomyces cerevisiae. Oligosaccharide extracts
of fOSs and LLOs from the alg8 S. cerevisiae mutant lacking the ALGS8 gene were profiled using fluorescence- and evaporative
light scattering-based HPLC. LLOs did not produce accumulated levels of the target mutant- related monoglucosylated
(Gle;ManyGleNAc,) at 100 ml scale. However, it was possible to detect truncated oligomannose (paucimannose) structures in
the fOSs of the a/g8§ mutant.

Keywords: N-linked glycosylation, N-glycans, Free oligosaccharides, Lipid-linked oligosaccharides, Saccharomyces cerevisiae

Abstrak
N-glikan merupakan oligosakarida yang penting dalam biologi yang bersekutu dengan residu asparagina yang hadir dalam
keadaan terikat atau tidak terikat kepada protein dalam semua eukariot (termasuk yis) dan sesetengah bakteria. Struktur asas
oligosakarida ini adalah berdasarkan struktur kitobiose trimanosa yang terhasil melalui pengglikosilan-N. Oligosakarida ini
penting untuk kajian kimia, struktur dan fungsi disebabkan kepentingan biologinya. Oleh itu, kami telah mengkaji kaedah
penyediaan oligosakarida dengan pendekatan biokimia menggunakan yis mutan (alg) Saccharomyces cerevisiae yang
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menghasilkan monoglukosa oligosakarida terpaut-lipid (LLO) yang diperlukan dalam pengumpulan glikoprotein terpaut-N dan
bukan-monoglukosa oligosakarida bebas (fOS) daripada glikoprotein terpaut-N silap lipatan. Ekstrak oligosakarida fOS dan LLO
daripada mutan alg8 S. cerevisiae tanpa gen ALGS telah diprofil menggunakan KCPT-pendarfluor dan pengesan penyerakan
cahaya sejatan. LLO didapati tidak menghasilkan sebatian sasaran monoglukosa (Glc;ManyGlcNAc,) berkaitan-mutan pada
skala 100 ml. Walau bagaimanapun, struktur fOS oligomanosa terpangkas (pausimanosa) boleh dikesan daripada mutan algs.

Kata kunci: pengglikosilan terpaut-N, N-glikan, Oligosakarida bebas, Oligosakarida terpaut-lipid, Saccharomyces cerevisiae

Introduction

Asparagine (N)-linked glycosylation is the most widespread form of modification found in secreted glycoproteins of
all eukaryotes and some prokaryotes as part of the endoplasmic reticulum-associated degradation (ERAD) pathway
[1]. These oligosaccharides are significant in various biological processes such as pathogenesis, development,
fertility, protein biosynthesis and folding [2, 3]. The biosynthesis of these naturally occurring oligosaccharides
begins in the endoplasmic reticulum (ER) with the assistance of the lipid carrier dolichol-pyrophosphate (Dol-PP) to
form a lipid-linked triglucosylated high-mannose type oligomannose N-glycan. Subsequently, the Dol-PP lipid-
linked oligosaccharide (LLO) is transferred co-translationally by oligosaccharyltransferase (OST) to an asparagine
residue of a nascent polypeptide within N-X-S/T sequence (N = asparagine, X = any amino acid except proline, S =
serine, T = threonine) to produce Glc;ManyGlcNAc, N-linked glycoproteins in the ER. Triglucosylated N-
glycoproteins are further processed by ER glucosidases I and II to generate monoglucosylated Glc;ManyGIlcNAc,
and non-glucosylated ManyGlcNAc, on partially folded proteins. Both these high-mannose type N-glycan structures
play a critical role in ERAD-controlled protein folding via interaction with the molecular chaperones calreticulin
and calnexin [4]. After the initial phase of biosynthesis and protein folding quality control in the ER, these
oligomannoses will be trimmed for either further (1) expansion in the Golgi with other mannose or non-mannose
units such as galactose, galactosamine, glucosamine, xylose and sialic acid for secretion as glycoproteins or (2)
truncation as protein unbound oligosaccharides in the cytosol and lysosome. Therefore, the lipid-linked and
protein-unbound N-glycans may represent a naturally occurring source for the scalable production of these
oligosaccharides using a biochemical (mutant) approach as opposed to using chemical synthesis. In the ER, units of
monosaccharides are linked to each other by the asparagine-linked glycosylation (ALG) I to /4 genes encoding N-
glycosylation enzymes. Mutations involving ALG genes will produce accumulation of the biosynthetically relevant
N-glycan isomers. For example, absence of the ALGS8 gene that is responsible for the formation of
Glc,ManygGleNAc, will result in the accumulation of the Glc;MangGlcNAc, N-glycan LLO [5]. Therefore, this study
explored the production of high-mannose type N-glycans using the alg8 mutant to obtain monoglucosylated and
non-glucosylated N-glycans.

Among the many uses of obtaining sufficient quantity of N-glycans would be for structural/conformational studies
such as to probe the critical role N-glycans play in the ERAD pathway [6]. Conformational studies of N-glycans is
mainly based on NMR and molecular dynamics. The structural determination of glycans is beset by the limited
spectral dispersion of 1D NMR ('H and "C nuclei). Although, using 2D NMR spectroscopy facilitates the process
of resonance and linkage assignments, it is still tedious and time-consuming [7]. Isotope labelling especially "*C and
preparative-scale analysis of N-glycans can significantly reduce analytical time and allow higher dimensional 3D
and 4D NMR experiments to be carried out as routinely done in protein NMR. Additionally, N-glycans can be used
as valuable analytical standards or as natural substrates for enzyme assays. The preparative-scale production of
glycans is also beneficial for the synthesis of glycoconjugates. For example, glycans can be employed in
bioorthogonal click chemistry to tag relevant protein substrates for proteomics analysis combining metabolic
engineering and mass spectrometry. These tags facilitate the discovery of biomarkers involved in disease
development through the screening of disease-related glycans and glycoproteins [8].

Preparative amounts of N-glycans have been produced through total chemical synthesis, chemoenzymatic synthesis
and isolation from natural sources [9, 10]. Total chemical synthesis is by far the most challenging especially for
larger and/or conjugated glycans such as glycoproteins and glycolipids. N-glycans obtained from N-linked
glycoproteins and LLOs as well as fOS have been analysed in cells. However, the preparative scale production of N-
glycans in previous reports have been complicated by the enzymatic (PNGase/Endo-H-treatment) or chemical
(hydrazinolysis-based) release of N-glycans from glycoproteins and tedious solvent-partitioning extractions steps
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for LLOs [11]. Commercially obtained PNGase F is expensive, and hydrazine is an explosive hazard for sugar-
release at the preparative-scale. Therefore, we investigated the use of LLOs and fOSs from a mutant Saccharomyces
cerevisiae strain (alg8) as source of N-glycans to: (1) obviate the need for sugar release and tedious solvent
extraction and (2) obtain target N-glycans i.e the use of the al/g8 mutant to obtain monoglucosylated structure(s)
from LLOs and non-target N-glycans from fOSs.

Materials and Methods
Reagents
Yeast Nitrogen Base (YNB), selected amino acids, acid-washed glass beads, AGS0W-X12 (H" form), AG2-X8 (CI
form) and DEAE-cellulose were kindly gifted by the Oxford Glycobiology Institute, University of Oxford. Water
was obtained from The Pacific UP6 TKA system was used to obtain pure water. Other materials were purchased
from major vendors such as Sigma and Merck unless stated otherwise.

Yeast strains and culture conditions

The Saccharomyces cerevisiae strains used in this study were BY4743 (MATa/a his3A1/his3A1 leu2A0/leu2A0
metl SAO/MET15 lys2A0/LYS2 ura3A0/ura3A0) and YOR067C BY4743 (MATa/a his3A1/his3A1 leu2A0/leu2 A0
metl SAO/MET15 lys2A0/LYS2 ura3A0/ura3A0 Aalg8::kanMX4) from Dharmacon, GE Healthcare. Both yeast
strains were grown aerobically in Yeast Nitrogen Base (YNB) medium (100 ml) containing 2% (w/v) glucose and
2% (w/v) selected-amino acids (4 mg/ml histidine, 4 mg/ml uracil, 4 mg/ml methionine and 12 mg/ml leucine) in a
rotary shaker (180 rpm) at 30 °C.

Extraction of LLOs

The LLOs were extracted using a previously described method [12]. The cell pellets were harvested by
centrifugation (2500 rpm/ 1200 x g, 8 min; same parameters used for the rest of this protocol) and washed using
phosphate-buffered saline (PBS) three times. Methanol (10 ml) was added and the cells were transferred into glass
tubes (10 ml). Sonication was performed for 10 minutes using a water bath-type sonicator and dried under N, gas. A
chloroform-methanol (2:1; 10 ml) solution was added into the tubes, sonicated, vortexed, centrifuged and the
supernatant discarded. The cells were resuspended in methanol again, sonicated for 10 minutes and dried under N,
gas. The chloroform-methanol extraction procedure was repeated, but this time using 10 ml water and subsequently
chloroform-methanol-water (CMW) (10:10:3; 10 ml). The supernatants from the final centrifugation were collected
for further LLO extraction. For LLO partial purification, each CMW extract was run through a DEAE-cellulose
column pre-equilibrated with CMW. After sample loading, the column was washed using 10 bed volumes of CMW
followed by 10 bed volumes of 3 mM acetic acid in CMW. Elution was carried out using 10 bed volumes of 300
mM NH;OAc in CMW. Chloroform (4.3 bed volumes) and water (1.2 bed volumes) were added into the collection
tubes, vortexed and centrifuged which resulted in three phases. The upper layer was removed and the remaining
layers (middle and lower) were dried using N, gas. For oligosaccharides released from LLOs, 2 ml of 0.1 N HCl in
50% isopropanol was added into the dried samples, vortexed, incubated for 1 hour at 50 °C and dried under N, gas.
Butanol-saturated water (1 ml) was added, vortexed. After that, 1 ml of water-saturated butanol was added before
centrifugation, and the lower phase was recovered after centrifugation and freeze-dried. The dried residues were
resuspended in 1 ml water to which 200 pl of AG50W-X12 (H" form) was added, vortexed, and centrifuged. The
supernatant was collected and added to 200 ul of AG2-X8 (CI” form) that was vortexed and then centrifuged. The
oligosaccharides released from LLOs were obtained from the recovered supernatant.

Extraction of fOSs

fOSs were extracted by a previously described method [13]. Briefly, the harvest step was the same as LLO
extraction, i.e. cells were recovered by centrifugation and the medium discarded. PBS buffer was added into the
tube containing the cells and washed three times. Then, the cells were snap-frozen using liquid nitrogen for 10
seconds and thawed three times. One volume of lysis buffer (100 mM Tris-HCI, pH 7.4 containing 4 mM MgCl,)
and acid-washed glass beads were added into the tube, vortexed for 30 seconds (six times) and the cell debris
removed by centrifugation. The supernatants were desalted by mixed-bed ion exchange column (0.1 ml of AG50W-
X12 [H" form] over 0.2 ml AG8-X2 [CI" form]), pre-equilibrated with 5 x 1 ml water, followed by loading and
washing with 4 x 1 ml. The eluate was collected for further analysis.
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Phenol-sulfuric acid assay

The concentration of oligosaccharides in the extracted fOS samples were determined using the microtiter phenol-
sulfuric acid assay (PSA) instead of the conventional tube-based assay [14]. Three types of samples were prepared;
blank, standard and samples. The blank was the solvent used for dissolving the standards and samples. A series of
known glucose standard concentrations ranging from 0.05 to 1.0 mg/ml was prepared. For each 50 ul sample, 150
pl of concentrated sulfuric acid was added rapidly into a well of a 96-well microplate for maximum mixing.
Immediately after acid-mixing, 30 ul of 5% phenol was added followed by incubation at 90 °C for 5 minutes using a
water bath. The plate was floated carefully to avoid any sample leakage. The plate was cooled for a few minutes and
wiped dry to measure the absorbance at 490 nm (A4490,m) Using a microplate reader.

Carbohydrate fluorescence labelling

The carbohydrates were labelled with 2-anthranilic acid (2-AA) as previously described [15]. For the labelling
reaction, 30 mg of 2-AA was dissolved in 1 ml methanol containing 4% (w/v) sodium acetate trihydrate and 2%
(w/v) boric acid, followed by the addition of 45 mg sodium cyanoborohydride addition. Labelling reagent (80 pl)
was added to each sample (30 pul) and mixed well before incubation in a heating block for 80 °C for 45-60 minutes.
The reaction was cooled at room temperature and 1 ml of acetonitrile/water (97:3, v/v) was added. The labelled
samples were then further purified using Discovery DPA-6S column pre-equilibrated with 1 column volume of
acetonitrile water. The column was washed with 95% acetonitrile after sample loading and eluted with 2 x 0.75 ml
of water which was collected.

Carbohydrate analysis by HPLC-ELSD

The unlabelled samples were analysed by HPLC (Dionex UltiMate 3000 LC System) using an XBridge™ amide
column, 3.5 pum; 4.6 x 250 mm (Waters) coupled to an evaporative light scattering detector (ELSD) PS-ELS 2100
Ice (Polymer Laboratories) connected to nitrogen generator. The detector was set as follows: vaporisation
temperature = 55 °C; gas flow = 1.6 slm (standard litre per minute); light intensity = 100%; gain = 1.0; nebulisation
= 30 °C. Solvent A contained 20% 100 mM ammonium acetate, pH 3.85, in Milli-Q water and 80% acetonitrile.
Solvent B contained 20% 100 mM ammonium acetate, pH 3.85, in Milli-Q water, 60% Milli-Q water, and 20%
acetonitrile. Gradient conditions for carbohydrate analysis were as follows: time = 0 min (t = 0), 86% solvent A (0.8
ml/min); t = 6, 86% solvent A (0.8 ml/min); t = 35, 54.7% solvent A (0.8 ml/min); t = 37, 5% solvent A (0.8
ml/min); t = 39, 5% solvent A (0.8 ml/min); t =41, 86% solvent A (0.8 ml/min); t = 60, 86% solvent A (0.8 ml/min)
[15]. Samples were dissolved in Milli-Q water/acetonitrile (2:8, v/v) and injected using an autosampler (50 pl per
injection).

Carbohydrate analysis by HPLC-FD

The 2-AA labelled samples were kindly analysed by the Oxford Glycobiology Institute, University of Oxford,
United Kingdom using normal phase-HPLC with a 4.6 mm x 250 mm TSK gel-Amide 80 column (5 pum)
(Anachem, Luton, Beds, U.K) as described previously [15]. The chromatography system consisted of Waters
Alliance 2695 separations module and an in-line Waters 474 fluorescence detector (FD) set at ExA 360 nm and Em\
425 nm. Solvent A and B were prepared as described above for the HPLC-ELSD analysis. Gradient conditions for
carbohydrate analysis were as follows: time = 0 min (t = 0), 86% solvent A (0.8 ml/min); t = 6, 86% solvent A (0.8
ml/min); t = 35, 54.7% solvent A (0.8 ml/min); t =37, 5% solvent A (1 ml/min); t =39, 5% solvent A (1 ml/min); t
=41, 86% solvent A (1 ml/min). Samples were injected in Milli-Q water/acetonitrile (2:8, v/v).

Results and Discussion

Yeasts growth

Monoglucosylated structures of LLOs were expected to be accumulated with the deletion of the ALGS gene in the
LLO biosynthesis pathway. However, fOS was produced through deglycosylation of misfolded glycoprotein by the
enzyme PNGase F. This enzyme is known to be regulated in a growth-dependent manner [13]. Under standard
culture and laboratory conditions, wild type S. cerevisiae reaches the stationary phase, approximately, after 6 days
[16]. Based on this, larger fOSs (Man,.¢GIlcNAc,) were usually observed at the exponential phase and the presence
of these glycans were much reduced after six days of culture [13]. Thus, we generated a growth curve for the
parental and mutant yeast strains to harvest cells in the appropriate growth phase. Figure 1 shows the growth pattern
of the parental and mutant strains of the yeasts for 4 days. The growth curve intercepted each other after 3 days of
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culture the parental strain almost reached the stationary phase by day 3. However, mutant strain still increased after
the third day and was expected to reach the stationary phase after 6 days as described previously. Hence, we decided
to harvest the cells after 2 days because both yeasts showed a steady increase in growth and the larger glycans are
accumulated in this phase.

20 1

——— @ Parental (HomDip) strain
——4&—— alg8 mutant strain

- =y =y -
N £ [=}] (=]
L L s L

Growth (OD 600 nm)
=

Culture time (days)

Figure 1. The growth curve of parental (HomDip) and al/g8 mutant strains

Total concentration of carbohydrates in fOS extracts

The total concentration of carbohydrates was determined using the PSA assay. A standard curve for quantification
was generated using glucose. The linear equation generated from the standard curve shown to calculate sample
concentrations was y = 1.115x - 0.008 (R* = 0.995) (Figure 2). The total oligosaccharide content of only the fOS
samples were determined due to the negligible amounts of LLO extracted that were too little to be weighed (< 1 mg)
and detection of very weak peaks by fluorescence-based HPLC. Comparison of between the fOS crude extracts of
the parent and mutant strains showed that the concentration of carbohydrates was higher in the parent strain than the
mutant strain. The values were also comparable to levels to the difference in OD readings measuring growth.

038

0.6
@
o
]
204
g y = 1.1159x - 0.0085
8 R?=0.9951
<

0.2

0 T T T T T T d
0 0.1 0.2 0.3 04 0.5 0.6 0.7]
Concentration (mg/mL)

Figure 2. Standard curve of glucose for total carbohydrate content determination (PSA method)
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Table 1. Crude samples total carbohydrate concentration of parental and mutant strains

Samoles Concentration

P (mg/ml of cell lysate)
Parent strain (crude sample) 2.83
alg8 mutant strain (crude sample) 2.06

Analysis of LLOs and fOSs with HPLC-ELSD and HPLC-FD

HPLC analysis on the samples was carried out using ELSD and FD. The former mode of detection was universal
and less sensitive whereas the latter was selective and highly sensitive. The dextran molecular weight ladder
standard (0.1 mg/ml), LLOs and fOS extracted from parental and a/g8 mutant strains were analysed and shown in
Figures 3 — 6. The HPLC-ELSD and FD chromatograms of the dextran ladder demonstrated good separation of
peaks representing carbohydrates (glucose unit: GU) of difference sizes (ELSD: GU1 to GU12; and FD: GUI-
GU13). Some of the HPLC-ELSD peaks were broad and slightly spilt. This is most probably a result of different
configurations (o/f isomers) of the unlabeled sugar unit at the reducing end [17]. The 2AA-labelled fOS FD
chromatogram showed a more complex profile of peaks than the unlabeled fOS ELSD chromatogram (Figures 3 and
5). fOS extract peaks appearing at lower retention times corresponding to < GU3 were abundant in both the ELSD
and FD chromatograms. In the FD chromatogram, these peaks were present at extremely high intensities exceeding
the detection threshold of fluorescent detection (=10 000 mV) (data not shown). The profiles suggested that ELS
detection was not suitable (insensitive) for carbohydrate profiling on this scale of culture compared to fluorescence
detection.
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Figure 3. HPLC-ELSD analysis of (a) standard dextran and unlabeled fOS from (b) parental and (c) mutant strains

The major peaks in the HPLC profiles were more abundant in the parental strain. The common present in parent and
mutant) abundant peaks present in both the parent and mutant may correspond to B-glucans associated with the cell
wall of yeast have been extracted in fOS samples [18]. HPLC peaks were assigned using the glucose unit analysis
method via the calculation of GU values calibrated to the dextran mixture standard for comparison to the values of
known structures (Figure 6 and 7) [19, 20]. Based on this approach, two additional and abundant peaks with lower
GU values were present in the a/g8 mutant. The additional peaks in the mutant had low GU values at 5.30 (R, =
23.0) and 6.47 (R, = 27.7) corresponding to the paucimannose N-glycans MansGlcNAc, and MansGIcNAc,,
respectively (Figure 5) [19, 20]. This is due to the truncation of free monoglucosylated ManyGIcNAc, from
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misfolded N-linked glycoproteins by glucosidse II and mannosidases in the ERAD pathway. For the two reported
peaks, MangGlcNAc, was trimmed by a-1,2-mannosidase in ER to produce MansGlcNAc,. In addition, the known
absence of Endoglycosidase-H (Endo-H) in S. cerevisiae suggested that the glycan structures should be present with
two GIcNAc units instead of one because, under normal circumstances, the presence of Endo-H will cleave
chitobiose [21]. Our results show that the accumulation of fOSs from the lysate of alg8 S. cerevisiae mutant was
more abundant than LLOs at the same scale of culture. Although LLOs did not show accumulation of the target N-
glycan Glc;ManyGIcNAc,, elevated levels of truncated oligomannose (paucimannose) N-glycans MansGlcNAc, and
MangGlcNAc, were detected in fOSs using the alg8 mutant.
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Figure 4. HPLC-FD analysis of 2-AA labelled LLOs from (a) parental and (b) mutant strains

8000 - A (@)
[ A
[\ /F \
| 1

3 A\ i ——

8 1000 \/\——"’\/M\/\x/\/v

H

Q

53000 (b)

=}

= 2000 b y

1000 fhr_ .
18 20 22 24 26 28 30 32 34 36 38 40 42 44
Time (minutes)

Figure 5. HPLC-FD analysis of 2-AA labelled fOS from (a) parental and (b) al/g8 mutant strains; x = MansGIcNAc,
and y = MangGIcNAc,
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Figure 7. 5™ order calibration curve generated from 2-AA-dextran profile for glucose unit (GU) value
determination based on HPLC retention times

Conclusions
fOSs from S. cerevisiae afforded higher amounts of oligosaccharides than LLO at the same scale of culture
(100 ml). Accumulation of the monoglucosylated Glc;ManyGIcNAc, and/or its mannose-truncated forms was not
observed in the LLOs of the alg8 S. cerevisiae mutant. However, accumulation of truncated oligomannoses
(paucimannoses) MansGlcNAc, and MangGlcNAc, was only observed in the fOS extract of the same mutant.
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