Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1065 - 1073

DOI: https://doi.org/10.17576/mjas-2017-2105-08

 

 

 

EXTRACTION AND CHARACTERIZATION OF CELLULOSE FROM AGRICULTURAL RESIDUE - OIL PALM FRONDS

 

(Pengekstrakan dan Pencirian Selulosa daripada Bahan Buangan Pertanian - Pelepah Kelapa Sawit)

 

Siti Rasila Ainaa Mohd Rasli1, Ishak Ahmad2, Azwan Mat Lazim2, Ainon Hamzah1*

 

1School of Biosciences and Biotechnology, Faculty of Science and Technology

 2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  ainonh@gmail.com

 

 

Received: 4 March 2017; Accepted: 22 August 2017

 

 

Abstract

Cellulose from oil palm fronds (OPF) was extracted using a cost-effective method combining physical treatment (high pressure steaming) and repeated chemical treatments (alkali and bleaching). Alkali and bleaching treatments were performed using low concentrations of sodium hydroxide and sodium chlorite, respectively. High levels of cellulose were successfully extracted, with 4 grams of cellulose for every 10 grams of raw oil palm fronds. The morphology of the cellulose was investigated using variable pressure scanning electron microscope (VPSEM). Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analyser (TGA) were used for structural analysis. The extracted cellulose was found to have smaller diameter (8 – 10 µm) and smoother surface compared to the untreated fibres. The results from FTIR, XRD and TGA indicate that the hemicelluloses and lignin were extensively removed from the isolated cellulose. Alkali treatment helped in removal of hemicelluloses, while bleaching assisted in delignification. The extracted cellulose showed high crystalline index of 68.75% and degradation temperature of 350 oC resulted from removal of lignin and hemicelluloses via alkali and bleaching treatments.

 

Keywords:   Elaeis guineensis, high pressure steaming, alkali treatment, bleaching treatment, cellulose

 

Abstrak

Selulosa telah diekstrak daripada pelepah kelapa sawit dengan menggunakan kaedah yang menjimatkan kos iaitu gabungan kaedah fizikal (pemanasan pada tekanan tinggi) dan rawatan kimia (alkali dan pelunturan). Rawatan alkali dilakukan dengan menggunakan sodium hidroksida manakala rawatan pelunturan pula dilakukan dengan menggunakan sodium klorit. Kedua-dua bahan kimia tersebut digunakan pada kepekatan yang rendah. Sebanyak 4 gram selulosa berjaya diekstrak daripada setiap 10 gram pelepah kelapa sawit. Morfologi selulosa yang diekstrak telah dikaji dengan menggunakan mikroskopi elektron pengimbas tekanan berubah-ubah (VPSEM). Manakala spektroskopi inframerah transformasi Fourier (FTIR), analisis belauan sinar-X (XRD) dan analisis termogravimetri (TGA) telah digunakan bagi tujuan menganalisis struktur selulosa. Selulosa yang diekstrak mempunyai diameter yang lebih kecil (8 – 10 µm) dan permukaan yang lebih licin berbanding gentian yang tidak dirawat. Hasil daripada FTIR, XRD dan TGA menunjukkan bahawa hemiselulosa dan lignin telah dibuang dalam jumlah yang tinggi selepas rawatan-rawatan tersebut dijalankan. Rawatan alkali membantu membuang hemiselulosa manakala rawatan pelunturan pula membantu membuang lignin daripada sampel. Selulosa yang diekstrak mempunyai tahap kristal yang tinggi iaitu 68.75% dan suhu degradasi yang tinggi iaitu 350 oC berikutan daripada pembuangan hemiselulosa dan lignin selepas rawatan alkali dan pelunturan dilakukan.

 

Kata kunci:   Elaeis guineensis, pemanasan pada tekanan tinggi, rawatan alkali, rawatan pelunturan, selulosa

 

References

1.       Malaysian Palm Oil Council (2015). Malaysia palm oil industry.     http://www.mpoc.org.my/Malaysia_Palm_Oil_Industry.aspx.  [Access online 13 April 2015].

2.       Altieri, M. A., Nicholls, C. I. and Fritz, M. A. (2014). Manage insects on your farm. Sustainable Agriculture Research and Education (SARE), Maryland: pp. 15 – 17.

3.       Duchemin, B., Thuault, A., Vicente, A., Rigaud, B., Fernandez, C. and Eve, S. (2012). Ultrastructure of cellulose crystallites in flax titles fibres. Cellulose, 19(6): 1837 – 1854.

4.       Kuutti, L. (2013). Cellulose, starch and their derivatives for industrial applications. VTT Technical Research Centre of Finland, Finland: pp. 35 – 37.

5.       Sabrina, S. M. S., Roshanida, A. R. and Norzita, N. (2013). Pretreatment of oil palm fronds for improving hemicelluloses content for higher recovery of xylose. Jurnal Teknologi (Sciences & Engineering), 62(2): 39 – 42.

6.       Sulaiman, O., Salim, N., Nordin, N. A., Hashim, R., Ibrahim, M. and Sato, M. (2012). The potential of oil palm trunk biomass as an alternative source for compressed wood. Bioresources, 7(2): 2688 – 2706.

7.       Kala, D. R., Rosenani, A. B., Fauziah, C. I., and Thorirah, L. A. (2009). Composting oil palm wastes and sewage sludge for use in potting media of ornamental plants. Malaysian Journal of Science, 13: 77 – 91.

8.       Nguyen, S. T., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C. and Duong, H. M. (2013). Cellulose aerogel from paper waste for crude oil spill cleaning. Industrial and Engineering Research, 52: 18386 – 13891.

9.       He, Z., Meng, M., Yan, L., Zhu, W., Sun, F., Yan, Y., Liu, Y. and Liu, S. (2015). Fabrication of new cellulose acetate blend imprinted membrane assisted with ionic liquid ((BMIM)Cl) for selective adsorption of salicylic acid from industrial wastewater. Separation and Purification Technology, 145: 63 – 74.

10.    Nataraj, S. K., Roy, S., Patil, M. B., Nadagouda, M. N., Rudzinski, W. E. and Aminabhavi, T. M. (2011). Cellulose-acetate-coated α-alumina ceramic composite tubular membranes, for wastewater treatment. Desalination, 281: 348 – 353.

11.    Chan, C. H., Chia, C. H., Zakaria, S., Ahmad, I. and Dufresne, A. (2013). Production and characterization of cellulose and nano-crystalline cellulose from Kenaf Core Wood. Bioresources, 8(1): 785 – 794.

12.    Segal, L., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10): 786 – 794.

13.    Chen, Y., Tshabalala, M., A., Gao, J., Stark, N. M. and Fan, Y. (2014). Colour and surface chemistry changes of pine wood flour after extraction and delignification. Bioresources, 9(2): 2937 – 2948.

14.    Johar, N., Ahmad, I. and Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37: 93 – 99.

15.    Park, J., Shin, H., Yoo, S., Zoppe, J. O. and Park, S. (2015). Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. Bioresources, 10(2): 2732 – 2743.

16.    Wells, B., Mccann, M., C., Shedletzky, E., Delmer, D. and Roberts, K. (1994). Structural features of cell walls from tomato cells adapted to grow o the herbicide 2,6-dichlorobenzonitrile. Journal of Microscopy, 173: 155 – 164. 

17.    Sheltami, R. M., Abdullah, I., Ahmad, I., Dufresne, A. and Kargarzadeh, H. (2012). Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88: 772 – 779.

18.    Syamani, F. A., Subyakto, S. and Suryani, A. (2015). Changes in oil palm frond fibre morphology, cellulose crystallinity and chemical functional groups during cellulose extraction phases. Chemistry and Materials Research, 7: 105 – 114.

19.    Neto, W. P. F., Silverio, H. A.,  Dantas, N. O. and Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops and Products, 42: 480 – 488.

20.    Morán, J. I., Alvarez, V. A., Cyras, V. P. and Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15: 149 – 159.

21.    Abe, K., Iwamoto, S. and Yano, H. S. (2009). Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules, 8(10): 3276 – 3278.

22.    Fahma, F., Iwamoto, S., Hori, N., Iwata, T. and Takemura, A., (2011). Effect of pre-acid- hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose, 18: 443 – 450.

 




Previous                    Content                    Next