Malaysian Journal of Analytical Sciences Vol 21 No 5
(2017): 1065 - 1073
DOI:
https://doi.org/10.17576/mjas-2017-2105-08
EXTRACTION AND
CHARACTERIZATION OF CELLULOSE FROM AGRICULTURAL
RESIDUE - OIL PALM FRONDS
(Pengekstrakan dan
Pencirian Selulosa daripada Bahan Buangan Pertanian - Pelepah Kelapa Sawit)
Siti Rasila Ainaa
Mohd Rasli1, Ishak Ahmad2, Azwan Mat Lazim2, Ainon
Hamzah1*
1School of Biosciences and Biotechnology, Faculty of
Science and Technology
2School
of Chemical Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: ainonh@gmail.com
Received: 4
March 2017; Accepted: 22 August 2017
Abstract
Cellulose from oil palm fronds (OPF) was
extracted using a cost-effective method combining physical treatment (high
pressure steaming) and repeated chemical treatments (alkali and bleaching).
Alkali and bleaching treatments were performed using low concentrations of
sodium hydroxide and sodium chlorite, respectively. High levels of cellulose
were successfully extracted, with 4 grams of cellulose for every 10 grams of
raw oil palm fronds. The morphology of the cellulose was investigated using variable
pressure scanning electron microscope (VPSEM). Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analyser
(TGA) were used for structural analysis. The extracted cellulose was found to
have smaller diameter (8 – 10 µm) and smoother surface compared to the
untreated fibres. The results from FTIR, XRD and TGA indicate that the
hemicelluloses and lignin were extensively removed from the isolated cellulose.
Alkali treatment helped in removal of hemicelluloses, while bleaching assisted
in delignification. The extracted cellulose showed high crystalline index of
68.75% and degradation temperature of 350 oC resulted from removal
of lignin and hemicelluloses via alkali and bleaching treatments.
Keywords: Elaeis guineensis, high pressure
steaming, alkali treatment, bleaching treatment, cellulose
Abstrak
Selulosa telah diekstrak daripada pelepah kelapa sawit dengan
menggunakan kaedah yang menjimatkan kos iaitu gabungan kaedah fizikal (pemanasan
pada tekanan tinggi) dan rawatan kimia (alkali dan pelunturan). Rawatan alkali
dilakukan dengan menggunakan sodium hidroksida manakala rawatan pelunturan pula
dilakukan dengan menggunakan sodium klorit. Kedua-dua bahan kimia tersebut
digunakan pada kepekatan yang rendah. Sebanyak 4 gram selulosa berjaya
diekstrak daripada setiap 10 gram pelepah kelapa sawit. Morfologi selulosa yang
diekstrak telah dikaji dengan menggunakan mikroskopi elektron pengimbas tekanan
berubah-ubah (VPSEM). Manakala spektroskopi
inframerah transformasi Fourier (FTIR), analisis belauan sinar-X (XRD) dan analisis
termogravimetri (TGA) telah digunakan bagi tujuan menganalisis struktur
selulosa. Selulosa yang diekstrak mempunyai diameter yang lebih kecil (8
– 10 µm) dan permukaan yang lebih licin berbanding gentian yang tidak dirawat.
Hasil daripada FTIR, XRD dan TGA menunjukkan bahawa hemiselulosa dan lignin
telah dibuang dalam jumlah yang tinggi selepas rawatan-rawatan tersebut
dijalankan. Rawatan alkali membantu membuang hemiselulosa manakala rawatan
pelunturan pula membantu membuang lignin daripada sampel. Selulosa yang
diekstrak mempunyai tahap kristal yang tinggi iaitu 68.75% dan suhu degradasi
yang tinggi iaitu 350 oC berikutan daripada pembuangan hemiselulosa
dan lignin selepas rawatan alkali dan pelunturan dilakukan.
Kata kunci: Elaeis
guineensis, pemanasan pada tekanan tinggi, rawatan alkali, rawatan
pelunturan, selulosa
References
1.
Malaysian
Palm Oil Council (2015). Malaysia palm oil industry. http://www.mpoc.org.my/Malaysia_Palm_Oil_Industry.aspx.
[Access online 13 April 2015].
2.
Altieri,
M. A., Nicholls, C. I. and Fritz, M. A. (2014). Manage insects on your farm.
Sustainable Agriculture Research and Education (SARE), Maryland: pp. 15 – 17.
3.
Duchemin,
B., Thuault, A., Vicente, A., Rigaud, B., Fernandez, C. and Eve, S. (2012).
Ultrastructure of cellulose crystallites in flax titles fibres. Cellulose, 19(6): 1837 – 1854.
4.
Kuutti,
L. (2013). Cellulose, starch and their derivatives for industrial applications.
VTT Technical Research Centre of Finland, Finland: pp. 35 – 37.
5.
Sabrina,
S. M. S., Roshanida, A. R. and Norzita, N. (2013). Pretreatment of oil palm
fronds for improving hemicelluloses content for higher recovery of xylose. Jurnal Teknologi (Sciences &
Engineering), 62(2): 39 – 42.
6.
Sulaiman,
O., Salim, N., Nordin, N. A., Hashim, R., Ibrahim, M. and Sato, M. (2012). The
potential of oil palm trunk biomass as an alternative source for compressed
wood. Bioresources, 7(2): 2688 – 2706.
7.
Kala,
D. R., Rosenani, A. B., Fauziah, C. I., and Thorirah, L. A. (2009). Composting
oil palm wastes and sewage sludge for use in potting media of ornamental
plants. Malaysian Journal of Science,
13: 77 – 91.
8.
Nguyen,
S. T., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C. and Duong,
H. M. (2013). Cellulose aerogel from paper waste for crude oil spill cleaning. Industrial and Engineering Research, 52:
18386 – 13891.
9.
He,
Z., Meng, M., Yan, L., Zhu, W., Sun, F., Yan, Y., Liu, Y. and Liu, S. (2015).
Fabrication of new cellulose acetate blend imprinted membrane assisted with
ionic liquid ((BMIM)Cl) for selective adsorption of salicylic acid from
industrial wastewater. Separation and
Purification Technology, 145: 63 – 74.
10.
Nataraj,
S. K., Roy, S., Patil, M. B., Nadagouda, M. N., Rudzinski, W. E. and
Aminabhavi, T. M. (2011). Cellulose-acetate-coated α-alumina ceramic composite
tubular membranes, for wastewater treatment. Desalination, 281: 348 – 353.
11.
Chan,
C. H., Chia, C. H., Zakaria, S., Ahmad, I. and Dufresne, A. (2013). Production
and characterization of cellulose and nano-crystalline cellulose from Kenaf
Core Wood. Bioresources, 8(1): 785 – 794.
12.
Segal,
L., Creely, J. J., Martin, A. E. and Conrad, C. M. (1959). An empirical method
for estimating the degree of crystallinity of native cellulose using the X-ray
diffractometer. Textile Research Journal,
29(10): 786 – 794.
13.
Chen,
Y., Tshabalala, M., A., Gao, J., Stark, N. M. and Fan, Y. (2014). Colour and
surface chemistry changes of pine wood flour after extraction and
delignification. Bioresources, 9(2):
2937 – 2948.
14.
Johar,
N., Ahmad, I. and Dufresne, A. (2012). Extraction, preparation and
characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37: 93
– 99.
15.
Park,
J., Shin, H., Yoo, S., Zoppe, J. O. and Park, S. (2015). Delignification of
lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. Bioresources, 10(2): 2732 – 2743.
16.
Wells,
B., Mccann, M., C., Shedletzky, E., Delmer, D. and Roberts, K. (1994).
Structural features of cell walls from tomato cells adapted to grow o the
herbicide 2,6-dichlorobenzonitrile.
Journal of Microscopy, 173: 155 – 164.
17.
Sheltami,
R. M., Abdullah, I., Ahmad, I., Dufresne, A. and Kargarzadeh, H. (2012).
Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88: 772 – 779.
18.
Syamani,
F. A., Subyakto, S. and Suryani, A. (2015). Changes in oil palm frond fibre
morphology, cellulose crystallinity and chemical functional groups during
cellulose extraction phases. Chemistry
and Materials Research, 7: 105 – 114.
19.
Neto,
W. P. F., Silverio, H. A., Dantas, N. O.
and Pasquini, D. (2013). Extraction and characterization of cellulose
nanocrystals from agro-industrial residue – Soy hulls. Industrial Crops and Products, 42: 480 – 488.
20.
Morán,
J. I., Alvarez, V. A., Cyras, V. P. and Vázquez, A. (2008). Extraction of cellulose
and preparation of nanocellulose from sisal fibers. Cellulose, 15: 149 – 159.
21.
Abe,
K., Iwamoto, S. and Yano, H. S. (2009). Obtaining cellulose nanofibers with a
uniform width of 15 nm from wood. Biomacromolecules,
8(10): 3276 – 3278.
22.
Fahma,
F., Iwamoto, S., Hori, N., Iwata, T. and Takemura, A., (2011). Effect of
pre-acid- hydrolysis treatment on morphology and properties of cellulose
nanowhiskers from coconut husk. Cellulose,
18: 443 – 450.