Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1016 - 1027
DOI:
https://doi.org/10.17576/mjas-2017-2105-03
BREAKDOWN
OF HYDROGEN SULFIDE IN SEAWATER UNDER DIFFERENT RATIO OF DISSOLVED OXYGEN /
HYDROGEN SULFIDE
(Penguraian Hidrogen Sulfida dalam Air Laut dengan Nisbah Oksigen Terlarut / Hidrogen Sulfida yang Berbeza)
Hii Yii Siang1*, Norhayati Mohd Tahir2, Abdul Malek3,
Mohd Azlan Md Isa3
1School of Fisheries and Aquaculture Science
2School of Marine and Environmental Sciences
University
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
3Sapura Kencana Energy Inc., Level 6, Menara Sapura Kencana
Petroleum, Solaris Dutamas,
Jalan Dutamas 1, 50480 Kuala Lumpur, Malaysia
*Corresponding author: hii@umt.edu.my
Received: 29
November 2016; Accepted: 8 August 2017
Abstract
Breakdown
of hydrogen sulfide (H2S) in seawater is highly dependent on both
the concentration of dissolved H2S and dissolved oxygen (DO). A
simple correlation was found in the H2S dissociation and ratio of
[DO/H2S]. When the [DO/H2S]
ratio is more than one, H2S breakdown rapidly, resulting in a short
half-life of H2S in the seawater (in a time scale of minute). When
the dissolved oxygen is not a limiting factor, H2S breakdown in a
first order reaction. Nevertheless, when [DO/H2S] ratio is less than
1, H2S breakdown in the seawater becomes slower, resulting in a
longer H2S half-life (in a time scale up to hours). In this case, the H2S breakdown in
a pseudo-second order reaction. This pseudo-second order reaction is commonly
reported by other investigators. This study also investigated the relation
between the concentration of dissolved H2S and pH changes during H2S
dissociation in the seawater. The pH is
lowered with increasing concentration of initial H2S in the seawater
but appears to reach an asymptotic low value of about 4 as the dissolved H2S
approaches its saturation limit in the seawater at about 2,500 mg L-1.
Keywords: hydrogen
sulfide, dissolved oxygen, oxidation, seawater, H2S dissociation
Abstrak
Penguraian hidrogen sulfida (H2S)
dalam air laut sangat bergantung kepada kepekatan kedua-dua H2S
terlarut dan oksigen terlarut (DO). Satu kolerasi mudah telah ditemui antara
penguraian H2S dan nisbah [DO/H2S]. Apabila nisbah [DO/H2S]
kurang daripada satu, penguraian H2S adalah cepat, menyebabkan separuh
hayat H2S yang pendek dalam air laut (dalam skala masa minit). Dalam
keadaan yang mana oksigen terlarut bukan faktor penghad, penguraian H2S
merupakan tindak balas tertib pertama. Namun, apabila nisbah [DO/H2S]
melebihi satu, penguraian H2S dalam air laut menjadi lambat,
menyebabkan separuh hayat H2S yang lebih lama (dalam skala masa
jam). Dalam kes ini, penguraian H2S adalah tindak balas pseudo
tertib kedua. Tindak balas pseudo tertib kedua ini biasa dilaporkan oleh
ramai penyelidik. Kajian ini turut menyiasat hubung kait antara kepekatan H2S
terlarut dan perubahan pH semasa penguraian H2S dalam air laut.
Nilai pH jadi rendah dengan peningkatan kepekatan awal H2S dalam air
laut tapi ia mencapai nilai asimptot yang rendah dalam lingkungan 4 apabila
kepekatan H2S terlarut menghampiri had ketepuannya dalam air laut
pada kepekatan 2,500 mg L-1.
Kata kunci: hidrogen
sulfida, oksigen terlarut, pengoksidaan, air laut, penguraian H2S
References
1.
Karl, D. M. (1995). The microbiology of deep sea thermal vents. CRC Press,
New York, pp. 299.
2.
Ellis, A. J. and Golding, R. M. (1959). Spectrophotometric determination of
the acid dissociation constants of hydrogen sulphide. Journal of the Chemical Society, 1959: 127 – 130.
3.
Savenko, V. S. (1977). The dissociation of hydrogen sulfide in seawater. Oceanology, 16: 347 – 350.
4.
Barbero, J. A., McCurdy, K. G. and Tremaine, P. R. (1982). Apparent molal heat
capacities and volumes of aqueous hydrogen sulfide and sodium hydrogen sulfide near
25°C: The temperature dependence of H2S ionization. Canadian Journal of Chemistry, 60(14):
1872 – 1880.
5.
Millero, F. J., Plese, T. and Fernandez, M. (1988). The dissociation of hydrogen
sulfide in seawater. Limnology and
Oceanography, 33(2): 269 – 274.
6.
Zavodnov, S. S., and Kryukov, P. A. (1960). The value of the second dissociation
constant of hydrogen sulfide. Bulletin of
the Academy of Sciences of the USSR, Division of Chemical Science, 9(9):
1583 –1585.
7.
Cline, I. D. and Richards, F. A. (1969). Oxygenation of hydrogen sulfide in
seawater at constant salinity, temperature and pH. Environmental Science and Technology, 3(9): 838 – 843.
8.
Millero, F. J., Hubinger, S., Fernandez, M. and Garnett, S. (1987).
Oxidation of H2S in seawater as a function of temperature, pH, and
ionic strength. Environmental Science and
Technology, 21(5): 439 –443.
9.
Chen, K. Y. and J. C. Morris. (1972).
Kinetics of oxidation of aqueous sulphide by O2. Environmental Science and Technology,
6(6): 529 – 537.
10.
Göte, H. Ö. and Alexander, J. (1963). Oxidation rate of sulfide in seawater,
a preliminary study. Journal of
Geophysical Research, 68(13): 3995 – 3997.
11.
Sharma, K. R. and Yuan, Z. (2010). Kinetics of chemical sulfide oxidation
under high dissolved oxygen levels. Proceedings
of 6th International Conference of Sewer Processes and Networks:
1 – 3.
12.
Asaoka S., Yamamoto, T., Takahashi, Y., Yamamoto, H., Kim, K. H. and Orimoto,
K. (2012). Development of an on-site simplified
determination method for hydrogen sulfide in marine sediment pore water using a
shipboard ion electrode with consideration of hydrogen sulfide oxidation rate. Interdisciplinary Studies on Environmental
Chemistry - Environmental Pollution and Ecotoxicology, 6: 345 – 352.
13.
Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H.,
Spear, J. R., Przekop, K. M. and Visscher, P. T. (2006). Sulfate reducing
bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185: 131 – 145.
14.
Poulton, S. W., Krom, M. D., Raiswell, R. and Raiswell, R. (2004). A revised
scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide.
Geochimica et Cosmochimica Acta, 68:
3703 – 3715.
15.
Yao, W., and Millero, F. J. (1996). Oxidation of hydrogen sulfide by
hydrous Fe(III) oxides in seawater. Marine
Chemistry, 52: 1 – 16.
16.
American Public Health Association (2005). Standard methods for examination
of water and wastewater, American Public Health Association, W.W.A, Washington,
D.C.
17.
Han, K., Chu, T., Hirst, J., Smith, I. W. M., Canneaux, S., Kim, Y., Calvo,
F., de la Lande, A. Skodje, R. T., Kawai, S., Petters, B., Kapral, R., Kim, H.
J., Zhao, Y., Yan, Y., Zhang J., Swiatla-Wojcik, D., Bertrand, P., Varandas, A.
J. S., Borgis, D., Senthilkumar, K., Hase, W. L. and Gao, J. (2013). Reaction rate
constant computations: Theories and applications. Royal Society of Chemistry, London pp. 572.
18.
Pos, W. H., Milne, P. J., Riemer, D. D. and Zika, R. G. (1997),
Photoinduced oxidation of H2S species: A sink for sulfide in
seawater, Journal of Geophysical Research,
102(11): 12831 – 12837.
19.
Heitmann, T., and Blodau, C. (2006). Oxidation and incorporation of
hydrogen sulfide by dissolved organic matter. Chemical Geology, 235(1): 12 – 20.
20.
Luther, G. W., Findlay, A. J., MacDonald, D. J., Owings, S. M., Hanson, T.
E., Beinart, R. A., and Girguis, P. R. (2011). Thermodynamics and kinetics of
sulfide oxidation by oxygen: A look at inorganically controlled reactions and
biologically mediated processes in the environment. Frontiers in Microbiology, 2(62): 1 – 9.
21.
Dermendzhieva N., Razkazova-Velkova E., Martinov M., Ljutzkanov L. and
Beschkov V. (2013). Oxidation of sulfide ions in model solutions of seawater
using of metal catalysts built in carbon matrix. Journal of Chemical Technology and Metallurgy, 48(5): 465 – 468.
22.
Almgren T., Dyrssen D., Elgquist B. and Johansson H. (1976). Dissociation
of hydrogen sulfide in seawater and comparison of pH scale. Marine chemistry, 4: 289 – 297.
23.
Aumond V., Waeles M., Salaün P., Gibbon-Walsh K., van den Berg C. M. G.,
Sarradin P. and Riso R. D. (2012). Sulfide determination in hydrothermal
seawater samples using a vibrating gold micro-wire electrode in conjunction
with stripping chronopotentiometry. Analytica
Chimica Acta, 753: 42 – 47.