Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1016 - 1027

DOI: https://doi.org/10.17576/mjas-2017-2105-03

 

 

 

BREAKDOWN OF HYDROGEN SULFIDE IN SEAWATER UNDER DIFFERENT RATIO OF DISSOLVED OXYGEN / HYDROGEN SULFIDE

 

(Penguraian Hidrogen Sulfida dalam Air Laut dengan Nisbah Oksigen Terlarut / Hidrogen Sulfida yang Berbeza)

 

Hii Yii Siang1*, Norhayati Mohd Tahir2, Abdul Malek3, Mohd Azlan Md Isa3

 

1School of Fisheries and Aquaculture Science

2School of Marine and Environmental Sciences

University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

3Sapura Kencana Energy Inc., Level 6, Menara Sapura Kencana Petroleum, Solaris Dutamas,

Jalan Dutamas 1, 50480 Kuala Lumpur, Malaysia

 

*Corresponding author:  hii@umt.edu.my

 

 

Received: 29 November 2016; Accepted: 8 August 2017

 

 

Abstract

Breakdown of hydrogen sulfide (H2S) in seawater is highly dependent on both the concentration of dissolved H2S and dissolved oxygen (DO). A simple correlation was found in the H2S dissociation and ratio of [DO/H2S].  When the [DO/H2S] ratio is more than one, H2S breakdown rapidly, resulting in a short half-life of H2S in the seawater (in a time scale of minute). When the dissolved oxygen is not a limiting factor, H2S breakdown in a first order reaction. Nevertheless, when [DO/H2S] ratio is less than 1, H2S breakdown in the seawater becomes slower, resulting in a longer H2S half-life (in a time scale up to hours).  In this case, the H2S breakdown in a pseudo-second order reaction. This pseudo-second order reaction is commonly reported by other investigators. This study also investigated the relation between the concentration of dissolved H2S and pH changes during H2S dissociation in the seawater.  The pH is lowered with increasing concentration of initial H2S in the seawater but appears to reach an asymptotic low value of about 4 as the dissolved H2S approaches its saturation limit in the seawater at about 2,500 mg L-1.

 

Keywords:  hydrogen sulfide, dissolved oxygen, oxidation, seawater, H2S dissociation

 

Abstrak

Penguraian hidrogen sulfida (H2S) dalam air laut sangat bergantung kepada kepekatan kedua-dua H2S terlarut dan oksigen terlarut (DO). Satu kolerasi mudah telah ditemui antara penguraian H2S dan nisbah [DO/H2S]. Apabila nisbah [DO/H2S] kurang daripada satu, penguraian H2S adalah cepat, menyebabkan separuh hayat H2S yang pendek dalam air laut (dalam skala masa minit). Dalam keadaan yang mana oksigen terlarut bukan faktor penghad, penguraian H2S merupakan tindak balas tertib pertama. Namun, apabila nisbah [DO/H2S] melebihi satu, penguraian H2S dalam air laut menjadi lambat, menyebabkan separuh hayat H2S yang lebih lama (dalam skala masa jam). Dalam kes ini, penguraian H2S adalah tindak balas pseudo tertib kedua. Tindak balas pseudo tertib kedua ini biasa dilaporkan oleh ramai penyelidik. Kajian ini turut menyiasat hubung kait antara kepekatan H2S terlarut dan perubahan pH semasa penguraian H2S dalam air laut. Nilai pH jadi rendah dengan peningkatan kepekatan awal H2S dalam air laut tapi ia mencapai nilai asimptot yang rendah dalam lingkungan 4 apabila kepekatan H2S terlarut menghampiri had ketepuannya dalam air laut pada kepekatan 2,500 mg L-1.

 

Kata kunci:  hidrogen sulfida, oksigen terlarut, pengoksidaan, air laut, penguraian H2S

 

References

1.       Karl, D. M. (1995). The microbiology of deep sea thermal vents. CRC Press, New York, pp. 299.

2.       Ellis, A. J. and Golding, R. M. (1959). Spectrophotometric determination of the acid dissociation constants of hydrogen sulphide. Journal of the Chemical Society, 1959: 127 – 130.

3.       Savenko, V. S. (1977). The dissociation of hydrogen sulfide in seawater. Oceanology, 16: 347 – 350.

4.       Barbero, J. A., McCurdy, K. G. and Tremaine, P. R. (1982). Apparent molal heat capacities and volumes of aqueous hydrogen sulfide and sodium hydrogen sulfide near 25°C: The temperature dependence of H2S ionization. Canadian Journal of Chemistry, 60(14): 1872 – 1880.

5.       Millero, F. J., Plese, T. and Fernandez, M. (1988). The dissociation of hydrogen sulfide in seawater. Limnology and Oceanography, 33(2): 269 – 274.

6.       Zavodnov, S. S., and Kryukov, P. A. (1960). The value of the second dissociation constant of hydrogen sulfide. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 9(9): 1583 –1585.

7.       Cline, I. D. and Richards, F. A. (1969). Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature and pH. Environmental Science and Technology, 3(9): 838 – 843.

8.       Millero, F. J., Hubinger, S., Fernandez, M. and Garnett, S. (1987). Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength. Environmental Science and Technology, 21(5): 439 –443.

9.       Chen, K. Y. and J. C. Morris. (1972). Kinetics of oxidation of aqueous sulphide by O2.  Environmental Science and Technology, 6(6): 529 – 537.

10.    Göte, H. Ö. and Alexander, J. (1963). Oxidation rate of sulfide in seawater, a preliminary study. Journal of Geophysical Research, 68(13): 3995 – 3997.

11.    Sharma, K. R. and Yuan, Z. (2010). Kinetics of chemical sulfide oxidation under high dissolved oxygen levels. Proceedings of 6th International Conference of Sewer Processes and Networks: 1 – 3.

12.    Asaoka S., Yamamoto, T., Takahashi, Y., Yamamoto, H., Kim, K. H. and Orimoto, K. (2012).  Development of an on-site simplified determination method for hydrogen sulfide in marine sediment pore water using a shipboard ion electrode with consideration of hydrogen sulfide oxidation rate. Interdisciplinary Studies on Environmental Chemistry - Environmental Pollution and Ecotoxicology, 6: 345 – 352.

13.    Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R., Przekop, K. M. and Visscher, P. T. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185: 131 – 145.

14.    Poulton, S. W., Krom, M. D., Raiswell, R. and Raiswell, R. (2004). A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochimica et Cosmochimica Acta, 68: 3703 – 3715.

15.    Yao, W., and Millero, F. J. (1996). Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry, 52: 1 – 16.

16.    American Public Health Association (2005). Standard methods for examination of water and wastewater, American Public Health Association, W.W.A, Washington, D.C.

17.    Han, K., Chu, T., Hirst, J., Smith, I. W. M., Canneaux, S., Kim, Y., Calvo, F., de la Lande, A. Skodje, R. T., Kawai, S., Petters, B., Kapral, R., Kim, H. J., Zhao, Y., Yan, Y., Zhang J., Swiatla-Wojcik, D., Bertrand, P., Varandas, A. J. S., Borgis, D., Senthilkumar, K., Hase, W. L. and Gao, J. (2013). Reaction rate constant computations: Theories and applications. Royal Society of Chemistry, London pp. 572.

18.    Pos, W. H., Milne, P. J., Riemer, D. D. and Zika, R. G. (1997), Photoinduced oxidation of H2S species: A sink for sulfide in seawater, Journal of Geophysical Research, 102(11): 12831 – 12837.

19.    Heitmann, T., and Blodau, C. (2006). Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chemical Geology, 235(1): 12 – 20.

20.    Luther, G. W., Findlay, A. J., MacDonald, D. J., Owings, S. M., Hanson, T. E., Beinart, R. A., and Girguis, P. R. (2011). Thermodynamics and kinetics of sulfide oxidation by oxygen: A look at inorganically controlled reactions and biologically mediated processes in the environment. Frontiers in Microbiology, 2(62): 1 – 9.

21.    Dermendzhieva N., Razkazova-Velkova E., Martinov M., Ljutzkanov L. and Beschkov V. (2013). Oxidation of sulfide ions in model solutions of seawater using of metal catalysts built in carbon matrix. Journal of Chemical Technology and Metallurgy, 48(5): 465 – 468.

22.    Almgren T., Dyrssen D., Elgquist B. and Johansson H. (1976). Dissociation of hydrogen sulfide in seawater and comparison of pH scale. Marine chemistry, 4: 289 – 297.

23.    Aumond V., Waeles M., Salaün P., Gibbon-Walsh K., van den Berg C. M. G., Sarradin P. and Riso R. D. (2012). Sulfide determination in hydrothermal seawater samples using a vibrating gold micro-wire electrode in conjunction with stripping chronopotentiometry. Analytica Chimica Acta, 753: 42 – 47.

 




Previous                    Content                    Next