Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 820 - 829
DOI:
https://doi.org/10.17576/mjas-2017-2104-08
EFFECT
OF ONE STEP ACTIVATION KOH MODIFIED CARBON IN DIMETHYL CARBONATE
TRANSESTERIFICATION REACTIONS
(Kesan
Satu Langkah Pengaktifan KOH Terhadap Karbon Terubahsuai dalam Tindak Balas Transesterifikasi
dengan Dimetil Karbonat)
Abdul Rahim Yacob*, Nor Wajihan Muda,
Muhammad Azam bin Muhammad Zaki
Department
of Chemistry, Faculty of Science
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: manrahim@kimia.fs.utm.my
Received:
20 September 2016; Accepted: 16 May 2017
Abstract
In this work one step activation was
introduced to potassium hydroxide (KOH) modified palm kernel shells. Various
concentration of potassium hydroxide was used to activate and impregnate palm
kernel shell before calcined at 600 oC for 2 hours. All the prepared
samples were characterized using Fourier Transform Infrared spectroscopy
(FTIR), Nitrogen Adsorption Analysis and Field Emission Scanning Electron
Microscope (FESEM), respectively. The basicity and basic strength of the
prepared samples were determined using back titration methods. Following the
preparation, the samples were used as base heterogeneous catalyst in palm oil
transesterification reaction using dimethyl carbonate (DMC). Analysis of the
products were performed using Gas Chromatography-Flame Ionization Detector
(GC-FID) while to check the possibility of leaching, that is the presence of
potassium in the biodiesel X-ray Fluorescence (XRF) spectroscopy was used. FTIR
analysis of the raw palm kernel shell showed the presence of various functional
groups. However, after the activation most of the functional groups were
eliminated. A high BET surface area of 1054 m2/g was obtained from
10% AC/K, while the BET surface area for 15%, 20% and 25% AC/K decreases. This study shows, as the percentage of one step
activation potassium doped carbon increases, the basic strength increases and
followed by the increase in biodiesel production with leaching free reaction.
The percentage conversion of biodiesel for 10% AC/KOH, 15% AC/KOH, 20% AC/KOH
and 25% AC/KOH calculated were 35%, 45%, 63% and 67%, respectively.
Keywords: one step activation, dimethyl carbonate,
biodiesel, leaching free
Abstrak
Dalam kajian ini pengaktifan satu langkah diperkenalkan dengan menggunakan
kalium hidroksida (KOH) terubahsuai tempurung kelapa sawit. Pelbagai kepekatan
kalium hidroksida digunakan bagi mengaktifkan dan menepukan tempurung kelapa
sawit sebelum dikalsin pada 600 oC selama 2 jam. Kesemua sampel yang
telah disediakan dianalisis mengunakan teknik spektroskopi Inframerah
Transformasi Fourier (FTIR), Analisis Penjerapan Nitrogen dan Mikroskopi Medan
Pancaran Imbasan Elektron (FESEM). Kebesan dan kekuatan bes sampel yang
disediakan ditentukan melalui pentitratan kembali. Sampel yang telah disediakan
digunakan sebagai pemangkin bes heterogen untuk transesterifikasi minyak kelapa
sawit dengan dimetil karbonat (DMC). Hasil yang didapati dianalisis dengan
menggunakan Gas Kromatografi – Pengesan Pengionan Nyala (GC-FID) manakala untuk
mengkaji kemungkinan larut resap iaitu kehadiran kalium dalam biodiesel,
spektroskopi sinar-X pendarflour (XRF) digunakan. Analisis FTIR tempurung
kelapa sawit mentah menunjukkan kehadiran pelbagai kumpulan berfungsi.
Walaubagaimanapun, selepas pengaktifan dan karbonisasi, kebanyakan kumpulan
berfungsi ini telah disingkirkan. Luas permukaan BET yang tinggi iaitu 1054 m2/g
telah diperolehi daripada 10% AC/KOH, manakala luas permukaan BET untuk 15%,
20% dan 25% AC/KOH menurun. Hasil kajian menunjukkan apabila peratus penepuan
karbon dalam pengaktifan satu langkah oleh kalium meningkat, kekuatan bes turut
meningkat diikuti oleh peningkatan hasil biodiesel dalam tindak balas bebas
larut resap. Peratus penukaran biodiesel untuk 10% AC/K, 15% AC/K, 20% AC/K dan
25% AC/K adalah masing-masing 35%, 45%, 63% dan 67%.
Kata kunci: pengaktifan satu langkah, dimetil karbonat, biodiesel, bebas larut resap
References
1.
Largitte,
L., Brudey, T., Tant, T., Dumesnil, P. C. and Lodewyckx, P. (2015). Comparison
of the adsorption of lead by activated carbons from three lignocellulosic
precursors. Microporous and Mesoporous Materials, 219: 265 – 275.
2.
Mohd
Iqbaldin, M. N., Khudzir, I., Mohd Azlan, M. I., Zaidi, A. G., Surani, B. and
Zubri, Z. (2013). Properties of coconut shell activated carbon. Journal of
Tropical Forest Science, 25(4):
497 – 503.
3.
Govind
Raj, K. and Alias Joy, P. (2015). Coconut shell based activated carbon–iron
oxide magnetic nanocomposite for fast and efficient removal of oil spills. Journal
of Environmental Chemical Engineering, 3(3): 2068 – 2075.
4.
Xu,
J., Gao, Q., Zhang, Y., Tan, Y., Tian, W., Zhu, L. and Jiang, L. (2014).
Preparing two-dimensional microporous carbon from pistachio nutshell with high
areal capacitance as supercapacitor materials. Scientific Reports, 4: 5545 – 5551.
5.
Foo,
K. Y., Lee, L. K. and Hameed, B. H. (2013). Preparation of activated carbon
from sugarcane bagasse by microwave assisted activation for the remediation of
semi-aerobic landfill leachate. Bioresource Technology, 134: 166 – 172.
6.
Bohli,
T., Ouederni, A., Fiol, N. and Villaescusa, I. (2015). Evaluation of an activated
carbon from olive stones used as an adsorbent for heavy metal removal from
aqueous phases. Comptes Rendus Chimie, 18(1): 88 – 99.
7.
Rodrigues,
L. A., De Sousa Ribeiro, L. A., Thim, G. P., Ferreira, R. R., Alvarez-Mendez,
M. O. and Coutinho, A. D. R. (2013). Activated carbon derived from macadamia
nut shells: an effective adsorbent for phenol removal. Journal of Porous
Materials, 20 (4): 619 –
627.
8.
Di
Serio, M., Tesser, R., Casale, L., D’apos;Angelo, A., Trifuoggi, M. and
Santacesaria, E. (2010). Heterogeneous catalysis in biodiesel production: the
influence of leaching. Topics in Catalysis, 53(11-12): 811 – 819.
9.
Fabbri,
D., Bevoni, V., Notari, M. and Rivetti, F. (2007). Properties of a potential
biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel,
86 (5-6): 690 – 697.
10.
Zhang,
L., Sheng, B., Xin, Z., Liu, Q. and Sun, S. (2010). Kinetics of
transesterification of palm oil and dimethyl carbonate for biodiesel production
at the catalysis of heterogeneous base catalyst. Bioresource Technology,
101(21): 8144 – 8150.
11.
Buasri,
A., Chaiyut, N., Loryuenyong, V., Phakdeepataraphan, E., Watpathomsub, S. and
Kunakemakorn, V. (2013). Utilization of biodiesel wastes as a bioresource for
the preparation of activated carbon. International Journal of Applied
Physics and Mathematics, 3(3):
173 – 177.
12.
Hayashi,
J., Horikawa, T., Takeda, I., Muroyama, K. and Nasir Ani, F. (2002). Preparing
activated carbon from various nutshells by chemical activation with K2CO3.
Carbon, 40(13): 2381 –
2386.
13.
Hanapi,
S. Z., Masrom, N. I. and Yacob, A. R. (2010). Tungsten carbide synthesis by
microwave-induced alloying using phosphoric acid activated palm kernel shell
carbon. Journal of Materials Science and
Engineering, 4(4): 68 – 73.
14.
Shoaib,
M. and Al-Swaidan, H.M. (2015). Optimization and characterization of sliced
activated carbon prepared from date palm tree fronds by physical activation. Biomass
and Bioenergy, 73: 124 –
134.
15.
Misnon,
I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B. and Jose, R. (2015). Electrochemical
properties of carbon from oil palm kernel shell for high performance
supercapacitors. Electrochimica Acta, 174: 78 – 86.
16.
Yacob,
A. R., Majid, Z. A., Sari, R. and Dasril, D. (2008). Comparison of various
sources of high surface area carbon prepared by different types of activation. Malaysian
Journal of Analytical Sciences, 12(1):
264 – 271.
17.
Mopoung,
S., Moonsri, P., Palas, W. and Khumpai, S. (2015). Characterization and
properties of activated carbon prepared from tamarind seeds by KOH activation
for Fe(III) adsorption from aqueous solution. The Scientific World Journal,
2015: 1 – 9.
18.
Ahmadpour,
A. and Do, D. D. (1997). The preparation of activated carbon from macadamia
nutshell by chemical activation. Carbon, 35(12): 1723 – 1732.
19.
Cao,
Q., Xie, K. C., Lv, Y. K. and Bao, W. R. (2006). Process effects on activated
carbon with large specific surface area from corn cob. Bioresource
Technology, 97(1): 110 –
115.
20.
Konwar,
L. J., Boro, J. and Deka, D. (2014). Review on latest developments in biodiesel
production using carbon-based catalysts. Renewable and Sustainable Energy
Reviews, 29: 546 – 564.
21.
Gu,
Z. and Wang, X. (2013). Carbon materials from high ash biochar: A nanostructure
similar to activated graphene. American transactions on Engineering &
Applied sciences, 2(1): 15 –
34.
22.
Jin,
H., Lee, Y. S., and Hong, I. (2007). Hydrogen adsorption characteristics of
activated carbon. Catalysis Today, 120(3-4): 399 – 406.
23.
Intarapong,
P., Iangthanarat, S., Phanthong, P., Luengnaruemitchai, A. and Jai-In, S.
(2013). Activity and basic properties of KOH/mordenite for transesterification
of palm oil. Journal of Energy Chemistry, 22 (5): 690 – 700.
24.
Intarapong,
P., Iangthanarat, S., and Luengnaruemitchai, A. (2014). Biodiesel production
from palm oil using potassium hydroxide loaded on ZrO2 catalyst in a
batch reactor. Chiang Mai Journal of Science, 41(1): 128 – 137.
25.
Ivanoiu,
A., Schmidt, A., Peter, F., Rusnac, L. M., and Ungurean, M. (2011). Comparative
study on biodiesel synthesis from different vegetables oils. Chemical Bulletin
of “POLITEHNICA” University (Timisoara)., 56 (70): 94 – 98.
26.
Irmawati,
R., Shafizah, I., Sharina, A.N., and Ahangar, H. A. (2014). Transesterification
of palm oil by using silica loaded potassium carbonate (K2CO3/SiO2)
catalysts to produce fatty acid methyl esters (FAME). Energy and Power,
4(1): 7 – 15.
27.
Singh,
A. K. and Fernando, S. D. (2008). Transesterification of soybean oil using
heterogeneous catalysts, Energy & Fuels, 9(5): 2067 – 2069.