Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 820 - 829

DOI: https://doi.org/10.17576/mjas-2017-2104-08

 

 

 

EFFECT OF ONE STEP ACTIVATION KOH MODIFIED CARBON IN DIMETHYL CARBONATE TRANSESTERIFICATION REACTIONS

 

(Kesan Satu Langkah Pengaktifan KOH Terhadap Karbon Terubahsuai dalam Tindak Balas Transesterifikasi dengan Dimetil Karbonat)

 

Abdul Rahim Yacob*, Nor Wajihan Muda, Muhammad Azam bin Muhammad Zaki

 

Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: manrahim@kimia.fs.utm.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Abstract

In this work one step activation was introduced to potassium hydroxide (KOH) modified palm kernel shells. Various concentration of potassium hydroxide was used to activate and impregnate palm kernel shell before calcined at 600 oC for 2 hours. All the prepared samples were characterized using Fourier Transform Infrared spectroscopy (FTIR), Nitrogen Adsorption Analysis and Field Emission Scanning Electron Microscope (FESEM), respectively. The basicity and basic strength of the prepared samples were determined using back titration methods. Following the preparation, the samples were used as base heterogeneous catalyst in palm oil transesterification reaction using dimethyl carbonate (DMC). Analysis of the products were performed using Gas Chromatography-Flame Ionization Detector (GC-FID) while to check the possibility of leaching, that is the presence of potassium in the biodiesel X-ray Fluorescence (XRF) spectroscopy was used. FTIR analysis of the raw palm kernel shell showed the presence of various functional groups. However, after the activation most of the functional groups were eliminated. A high BET surface area of 1054 m2/g was obtained from 10% AC/K, while the BET surface area for 15%, 20% and 25% AC/K decreases. This study shows, as the percentage of one step activation potassium doped carbon increases, the basic strength increases and followed by the increase in biodiesel production with leaching free reaction. The percentage conversion of biodiesel for 10% AC/KOH, 15% AC/KOH, 20% AC/KOH and 25% AC/KOH calculated were 35%, 45%, 63% and 67%, respectively.

 

Keywords:  one step activation, dimethyl carbonate, biodiesel, leaching free

 

Abstrak

Dalam kajian ini pengaktifan satu langkah diperkenalkan dengan menggunakan kalium hidroksida (KOH) terubahsuai tempurung kelapa sawit. Pelbagai kepekatan kalium hidroksida digunakan bagi mengaktifkan dan menepukan tempurung kelapa sawit sebelum dikalsin pada 600 oC selama 2 jam. Kesemua sampel yang telah disediakan dianalisis mengunakan teknik spektroskopi Inframerah Transformasi Fourier (FTIR), Analisis Penjerapan Nitrogen dan Mikroskopi Medan Pancaran Imbasan Elektron (FESEM). Kebesan dan kekuatan bes sampel yang disediakan ditentukan melalui pentitratan kembali. Sampel yang telah disediakan digunakan sebagai pemangkin bes heterogen untuk transesterifikasi minyak kelapa sawit dengan dimetil karbonat (DMC). Hasil yang didapati dianalisis dengan menggunakan Gas Kromatografi – Pengesan Pengionan Nyala (GC-FID) manakala untuk mengkaji kemungkinan larut resap iaitu kehadiran kalium dalam biodiesel, spektroskopi sinar-X pendarflour (XRF) digunakan. Analisis FTIR tempurung kelapa sawit mentah menunjukkan kehadiran pelbagai kumpulan berfungsi. Walaubagaimanapun, selepas pengaktifan dan karbonisasi, kebanyakan kumpulan berfungsi ini telah disingkirkan. Luas permukaan BET yang tinggi iaitu 1054 m2/g telah diperolehi daripada 10% AC/KOH, manakala luas permukaan BET untuk 15%, 20% dan 25% AC/KOH menurun. Hasil kajian menunjukkan apabila peratus penepuan karbon dalam pengaktifan satu langkah oleh kalium meningkat, kekuatan bes turut meningkat diikuti oleh peningkatan hasil biodiesel dalam tindak balas bebas larut resap. Peratus penukaran biodiesel untuk 10% AC/K, 15% AC/K, 20% AC/K dan 25% AC/K adalah masing-masing 35%, 45%, 63% dan 67%.

 

Kata kunci:  pengaktifan satu langkah, dimetil karbonat, biodiesel, bebas larut resap

 

References

1.       Largitte, L., Brudey, T., Tant, T., Dumesnil, P. C. and Lodewyckx, P. (2015). Comparison of the adsorption of lead by activated carbons from three lignocellulosic precursors. Microporous and Mesoporous Materials, 219: 265 – 275.

2.       Mohd Iqbaldin, M. N., Khudzir, I., Mohd Azlan, M. I., Zaidi, A. G., Surani, B. and Zubri, Z. (2013). Properties of coconut shell activated carbon. Journal of Tropical Forest Science, 25(4): 497 – 503.

3.       Govind Raj, K. and Alias Joy, P. (2015). Coconut shell based activated carbon–iron oxide magnetic nanocomposite for fast and efficient removal of oil spills. Journal of Environmental Chemical Engineering, 3(3): 2068 – 2075.

4.       Xu, J., Gao, Q., Zhang, Y., Tan, Y., Tian, W., Zhu, L. and Jiang, L. (2014). Preparing two-dimensional microporous carbon from pistachio nutshell with high areal capacitance as supercapacitor materials. Scientific Reports, 4: 5545 – 5551.

5.       Foo, K. Y., Lee, L. K. and Hameed, B. H. (2013). Preparation of activated carbon from sugarcane bagasse by microwave assisted activation for the remediation of semi-aerobic landfill leachate. Bioresource Technology, 134: 166 – 172.

6.       Bohli, T., Ouederni, A., Fiol, N. and Villaescusa, I. (2015). Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chimie, 18(1): 88 – 99.

7.       Rodrigues, L. A., De Sousa Ribeiro, L. A., Thim, G. P., Ferreira, R. R., Alvarez-Mendez, M. O. and Coutinho, A. D. R. (2013). Activated carbon derived from macadamia nut shells: an effective adsorbent for phenol removal. Journal of Porous Materials, 20 (4): 619 – 627.

8.       Di Serio, M., Tesser, R., Casale, L., D’apos;Angelo, A., Trifuoggi, M. and Santacesaria, E. (2010). Heterogeneous catalysis in biodiesel production: the influence of leaching. Topics in Catalysis, 53(11-12): 811 – 819.

9.       Fabbri, D., Bevoni, V., Notari, M. and Rivetti, F. (2007). Properties of a potential biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel, 86 (5-6): 690 – 697.

10.    Zhang, L., Sheng, B., Xin, Z., Liu, Q. and Sun, S. (2010). Kinetics of transesterification of palm oil and dimethyl carbonate for biodiesel production at the catalysis of heterogeneous base catalyst. Bioresource Technology, 101(21): 8144 – 8150.

11.    Buasri, A., Chaiyut, N., Loryuenyong, V., Phakdeepataraphan, E., Watpathomsub, S. and Kunakemakorn, V. (2013). Utilization of biodiesel wastes as a bioresource for the preparation of activated carbon. International Journal of Applied Physics and Mathematics, 3(3): 173 – 177.

12.    Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K. and Nasir Ani, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13): 2381 – 2386.

13.    Hanapi, S. Z., Masrom, N. I. and Yacob, A. R. (2010). Tungsten carbide synthesis by microwave-induced alloying using phosphoric acid activated palm kernel shell carbon. Journal of Materials Science and Engineering, 4(4): 68 – 73.

14.    Shoaib, M. and Al-Swaidan, H.M. (2015). Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass and Bioenergy, 73: 124 – 134.

15.    Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B. and Jose, R. (2015). Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochimica Acta, 174: 78 – 86.

16.    Yacob, A. R., Majid, Z. A., Sari, R. and Dasril, D. (2008). Comparison of various sources of high surface area carbon prepared by different types of activation. Malaysian Journal of Analytical Sciences, 12(1): 264 – 271.

17.    Mopoung, S., Moonsri, P., Palas, W. and Khumpai, S. (2015). Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution. The Scientific World Journal, 2015: 1 – 9.

18.    Ahmadpour, A. and Do, D. D. (1997). The preparation of activated carbon from macadamia nutshell by chemical activation. Carbon, 35(12): 1723 – 1732.

19.    Cao, Q., Xie, K. C., Lv, Y. K. and Bao, W. R. (2006). Process effects on activated carbon with large specific surface area from corn cob. Bioresource Technology, 97(1): 110 – 115.

20.    Konwar, L. J., Boro, J. and Deka, D. (2014). Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews, 29: 546 – 564.

21.    Gu, Z. and Wang, X. (2013). Carbon materials from high ash biochar: A nanostructure similar to activated graphene. American transactions on Engineering & Applied sciences, 2(1): 15 – 34.

22.    Jin, H., Lee, Y. S., and Hong, I. (2007). Hydrogen adsorption characteristics of activated carbon. Catalysis Today, 120(3-4): 399 – 406.

23.    Intarapong, P., Iangthanarat, S., Phanthong, P., Luengnaruemitchai, A. and Jai-In, S. (2013). Activity and basic properties of KOH/mordenite for transesterification of palm oil. Journal of Energy Chemistry, 22 (5): 690 – 700.

24.    Intarapong, P., Iangthanarat, S., and Luengnaruemitchai, A. (2014). Biodiesel production from palm oil using potassium hydroxide loaded on ZrO2 catalyst in a batch reactor. Chiang Mai Journal of Science, 41(1): 128 – 137.

25.    Ivanoiu, A., Schmidt, A., Peter, F., Rusnac, L. M., and Ungurean, M. (2011). Comparative study on biodiesel synthesis from different vegetables oils. Chemical Bulletin of “POLITEHNICA” University (Timisoara)., 56 (70): 94 – 98.

26.    Irmawati, R., Shafizah, I., Sharina, A.N., and Ahangar, H. A. (2014). Transesterification of palm oil by using silica loaded potassium carbonate (K2CO3/SiO2) catalysts to produce fatty acid methyl esters (FAME). Energy and Power, 4(1): 7 – 15.

27.    Singh, A. K. and Fernando, S. D. (2008). Transesterification of soybean oil using heterogeneous catalysts, Energy & Fuels, 9(5): 2067 – 2069.

 




Previous                    Content                    Next