Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 754 - 761
DOI:
https://doi.org/10.17576/mjas-2017-2103-25
CELLULOSE
NANOCRYSTALS WITH ENHANCED THERMAL STABILITY REINFORCED THERMOPLASTIC
POLYURETHANE
(Nanokristal
Selulosa Dengan Ketahanan Haba Yang Tinggi Berasaskan Poliuretina Termoplastik)
Khairatun Najwa
Mohd Amin1*, Pratheep Kumar Annamalai2, Darren Martin2
1Faculty of Chemical and Natural Resources
Engineering,
Universiti
Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
2Australian Institute for Bioengineering and
Nanotechnology (AIBN), Corner College and Cooper Rds (Bldg 75),
The University
of Queensland, Brisbane QLD 4072 Australia
*Corresponding author: knajwa@ump.du.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
Melt compounding processing approach for
incorporating cellulose nanocrystals (CNC) into thermoplastic polyurethane
(TPU) has not well been explored. This is primarily due to the poor thermal
stability and dispersibility of CNCs. As they are typically obtained from
sulphuric acid hydrolysis, they give rise to degradation and discolouration of
the extruded nanocomposites. The investigation of this research demonstrates
sulphuric acid hydrolysis (CNC-S), phosphoric acid hydrolysis (CNC-P) and a
novel non-hydrolytic high energy bead milling method (CNC-MC) into a polyether
based thermoplastic polyurethane via melt compounding using twin screw
extruder. The TPU film incorporated with CNC-S obviously shows the sign of CNC
degradation where TPU film was changed to brown colour. The tensile strength of
TPU reinforced with CNC-S, CNC-P and CNC-MC shows 18%, 16% and 14% of
improvement at CNC loading of 0 to 1 wt.% upon host polymer. CNCs isolated via
mild acid hydrolysis and mechanical milling methods, can be easily processed
via large scale melt-processing techniques for reinforcing thermoplastic
polyurethane without affecting their physical appearance and elastic
properties.
Keywords: cellulose nanocrystals, thermoplastic
polyurethane, nanocomposites
Abstrak
Kajian mengenai penggunaan nanokristal selulosa (CNC) di dalam
termoplastik poliuritena (TPU) amat jarang diterokai. Ini adalah kerana CNC mempunyai
ketahanan haba yang rendah. CNC yang dihasilkan melalui proses hidrolisis asid sulfurik
mudah terdegradasi apabila digabungkan dengan polimer yang melalui proses
meramu pencairan umumnya menggunakan suhu pemprosesan yang tinggi. Kajian ini
menggunakan CNC yang dihasilkan daripada hidrolisis asid sulfurik (CNC-S), asid
fosforik (CNC-P) dan kaedah novel pengisaran manik (CNC-MC) ke dalam
poliuretana termoplastik berasaskan berasas polieter melalui proses meramu
pencairan. Filem TPU yang digabungkan dengan CNC-S jelas menunjukkan tanda degradasi
CNC apabila filem TPU bertukar warna kepada coklat. Kekuatan tegangan TPU
diperkukuhkan dengan CNC-S, CNC-P dan CNC-MC menunjukkan 18%, 16% dan 14%
peningkatan pada muatan CNC 0-1 wt.% di dalam komposit. CNC yang dihasilkan
melalui hidrolisis asid berkekuatan sederhana dan melalui kaedah mekanikal
boleh diproses melalui teknik meramu pencairan yang berskala besar dan mampu
meningkatkan kekuatan poliuretana termoplastik tanpa menjejaskan penampilan
fizikal mereka dan sifat elastiknya.
Kata kunci: nanokristal
selulosa, poliuritena termoplastik, nanokomposit
References
1.
Barick, A. K., Jung, J. Y., Choi, M. C. and Chang, Y. W.
(2013). Thermoplastic vulcanizate nanocomposites based on thermoplastic
polyurethane and millable polyurethane blends reinforced with organoclay
prepared by melt intercalation technique: Optimization of processing parameters
via statistical methods. Journal of
Applied Polymer Science, 129 (3): 1405 - 1416.
2.
Koerner H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia,
R. A. (2005). Deformation–morphology correlations in electrically conductive
carbon nanotube - thermoplastic polyurethane nanocomposites. Polymer, 46 (12): 4405 - 4420.
3.
Kotal, M., Kuila, T., Srivastava, S. and Bhowmick, A. (2009).
Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide
nanocomposites. Journal of Applied Polymer Science, 114 (5): 2691 - 2699.
4.
Barick A. and Tripathy D. (2010). Thermal and dynamic
mechanical characterization of thermoplastic polyurethane/organoclay
nanocomposites prepared by melt compounding. Materials Science and Engineering: A, 527(3): 812 - 823.
5.
Liu, H., Liu, D., Yao, F. and Wu, Q. (2010). Fabrication and
properties of transparent polymethylmethacrylate/cellulose nanocrystals
composites. Bioresource Technology,
101(14): 5685 -5692.
6.
Pei, A., Malho, J. M., Ruokolainen, J., Zhou, Q. and Berglund,
L. A. (2011). Strong nanocomposite reinforcement effects in polyurethane
elastomer with low volume fraction of cellulose nanocrystals. Macromolecules, 44 (11): 4422 - 4427.
7.
Jyoti, J., Basu, S., Singh, B. P. and Dhakate, S., (2015). Superior
mechanical and electrical properties of multiwall carbon nanotube reinforced
acrylonitrile butadiene styrene high performance composites. Composites Part B: Engineering, 83: 58 -
65.
8.
Oksman, K., Mathew, A., Bondeson, D. and Kvien, I. (2006). Manufacturing
process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66 (15):
2776 - 2784.
9.
Ben Azouz, K., Ramires, E. C., Van den Fonteyne, W., El Kissi,
N. and Dufresne, A. (2011). Simple method for the melt extrusion of a cellulose
nanocrystal reinforced hydrophobic polymer. ACS
Macro Letters, 1(1): 236 - 240.
10.
Capadona, J. R., Van Den Berg, O., Capadona, L. A., Schroeter,
M., Rowan, S. J. and Tyler, D. J. (2007). A versatile approach for the
processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnology, 2(12): 765 - 769.
11.
Camarero Espinosa, S., Kuhnt, T., Foster, E. J. and Weder, C.
(2013). Isolation of thermally stable cellulose nanocrystals by phosphoric acid
hydrolysis. Biomacromolecules, 14(4):
1223 - 1230.
12.
Amin, K. N. M., Annamalai, P. K., Morrow, I. C. and Martin, D.
(2015). Production of cellulose nanocrystals via a scalable mechanical method. RSC Advances, 5(70): 57133 - 57140.
13.
Wang, N., Ding, E. Y., & Cheng, R. S. (2007). Thermal
degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer, 48(12): 3486 - 3493.
14.
Roman, M. and Winter, W. T. (2004). Effect of sulfate groups
from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial
cellulose. Biomacromolecules, 5(5):1671
- 1677.
15.
Salajkova, M. (2013). Wood nanocellulose materials and
effects from surface modification of nanoparticles. Thesis Doctor of Philosophy. KTH Royal Institute of Technology.
16.
Wang N., Ding, E. and Cheng, R. (2007). Thermal degradation
behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer, 48(12): 3486 - 3493.
17.
Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A.,
Zainudin, S. and Sheltami, R. (2012). Effects of hydrolysis conditions on the
morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted
from kenaf bast fibers. Cellulose, 19(3):
855 - 866.
18.
Favier, V., Chanzy, H. and Cavaille, J. Y. (1995). Polymer nanocomposites
reinforced by cellulose whiskers. Macromolecules,
28(18): 6365 - 6367.
19.
Dufresne, A., Cavaillé, J. Y. and Helbert, W. (1997). Thermoplastic
nanocomposites filled with wheat straw cellulose whiskers. Part II: Effect of
processing and modeling. Polymer
Composites, 18(2): 198 -210.