Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 670 - 680

DOI: https://doi.org/10.17576/mjas-2017-2103-16

 

 

 

POROSITY CONTROL OF HOLLOW FIBER MEMBRANES USING A MODEL REFERENCE ADAPTIVE CONTROLLER

 

(Kawalan Keliangan Membran Serat Berongga Menggunakan Model Pengawal Rujukan Adaptif)

 

Mohammad Abbasgholipourghadim1*, Musa Bin Mailah1, Intan Z. Mat Darus1, Masood Rezaei-Dasht Arzhandi2, Ahmad Fauzi Ismail2

 

1Department of Applied Mechanics and Design, Faculty of Mechanical Engineering

2Advanced Membrane Technology Research Centre (AMTEC)

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author: m.gholipour2010@gmail.com

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The conventional simple feedback controllers are not sometimes capable to properly perform online due to different dynamics during porous hollow fiber membranes (HFMs) fabrication process. This study implemented a model reference adaptive control (MRAC) for fabricating HFMs with the desired overall porosity. The artificial neural network (ANN) was used to identify the spinneret dynamic model. The developed ANN model was used as the plant model in the implemented MRAC to control the overall porosity of the HFMs. The proposed algorithms for controlling HFM overall porosity were simulated in MATLAB/Simulink. The Massachusetts Institute of Technology (MIT) rule was used for adaptive mechanism in the MRAC, where an appropriate cost function was determined as a function of error between the dynamic system and the reference output model. The controller parameters were adjusted after minimizing the selected cost function. The obtained results from the implemented MRAC scheme with MIT rule is found to be effective in controlling the porosity of the membranes. However, it was revealed that the system response is quite dependent on the changes of the input signal amplitude (overall porosity). In addition, large adaptation values reduced the stability of the system. Therefore, the MIT rule was normalized called as the normalized MIT towards the system response to be independent from different values of the porosity rule.

 

Keywords:  hollow fiber membrane, overall porosity, model reference adaptive control, artificial neural network

 

Abstrak

Pengawal konvensional tindak balas mudah kadangkala tidak mampu untuk melaksanakan tugas dalam talian kerana faktor dinamik yang berbeza semasa proses fabrikasi terhadap bahan membran serat berongga (HFM). Kajian ini menggunakan kawalan adaptif model rujukan (MRAC) untuk menghasilkan HFM dengan keliangan keseluruhan yang dikehendaki. Rangkaian neural buatan (ANN) telah digunakan untuk mengenal pasti model dinamik spinneret. Model ANN telah dibangunkan sebagai model sistem dinamik dalam MRAC untuk mengawal keliangan keseluruhan HFMs. Algoritma yang dicadangkan untuk mengawal keliangan keseluruhan HFM telah disimulasikan dalam MATLAB/Simulink. Peraturan MIT telah digunakan untuk mekanisme adaptif dalam MRAC dengan fungsi kos yang sesuai ditentukan sebagai fungsi ralat di antara model sistem dinamik dan rujukan keluaran. Parameter pengawal telah dapat diselaraskan selepas meminimumkan fungsi kos yang dipilih. Keputusan yang diperolehi daripada skim MRAC dengan peraturan MIT menunjukkan bahawa ia dapat mengawal keliangan membrane dengan berkesan. Walau bagaimanapun, tindak balas sistem ini didapati agak bergantung kepada perubahan amplitud isyarat masukan (keliangan keseluruhan). Di samping itu, nilai adaptasi tinggi mengurangkan kestabilan sistem. Dengan yang demikian, peraturan MIT telah diselaraskan dipanggil sebagai MIT diselaras ke arah menghasilkan tindak balas sistem yang bebas daripada perbezaan nilai peraturan keliangan.

 

Kata kunci:    membran serat berongga, keliangan keseluruhan, kawalan adaptif model rujukan, rangkaian neural buatan

 

References

1.       Zhang, L., Shi, G. Z., Qiu, S., Cheng, L. H. and Chen, H. L. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalination and Water Treatment, 34(1-3): 19 – 24.

2.       Tang, K. S., Man, K. F., Chen, G. and Kwong, S. (2001). An optimal fuzzy PID controller. IEEE Transactions on Industrial Electronics48(4): 757 – 765.

3.       Rubaai, A., Castro-Sitiriche, M. J. and Ofoli, A. R. (2008). DSP-based laboratory implementation of hybrid fuzzy-PID controller using genetic optimization for high-performance motor drives. IEEE Transactions on Industry Applications, 44(6): 1977 – 1986.

4.       Sun, D. and Meng, J. (2006).  A  single  neuron  PID  controller  based  PMSM DTC  drive  system  fed by fault tolerant 4-switch 3-phase inverter. Industrial Electronics and Applications, 2006 1ST IEEE Conference: pp. 1 – 5.

5.       Yao, J., Wang, L., Wang, C., Zhang, Z. and Jia, P. (2008). ANN-based PID controller for an electro-hydraulic servo system. 2008 IEEE International Conference on Automation and Logistics: pp. 18 – 22

6.       Koo, T. J. (2001). Stable model reference adaptive fuzzy control of a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 9(4): 624 – 636.

7.       Tsai, P. Y., Huang, H. C., Chen, Y. J. and Hwang, R. C. (2004). The model reference control by auto-tuning PID-like fuzzy controller. Proceedings of the 2004 IEEE International Conference: pp. 406 –411.

8.       Ehsani, M. S. (2007). Adaptive control of servo motor by MRAC method. 2007 IEEE Vehicle Power and Propulsion Conference: pp. 78 – 83

9.       Swarnkar, P., Jain, S. and Nema, R. K. (2010). Application of model reference adaptive control scheme to second order system using MIT rule. International Conference on Electrical Power and Energy Systems (ICEPES-2010), MANIT, Bhopal, India.

10.    Chen, Y., Wu, J. and Cheung, C. N. (2004). Lyapunov’s stability theory-based model reference adaptive control for permanent magnet linear motor drives. Power Electronics Systems and Applications, 2004. Proceedings: pp. 260 – 266.

11.    Stefanello, M., Kanieski, J. M., Cardoso, R. and  Grundling, H. A.  (2008).  Design  of  a robust model reference adaptive control for a shunt active power filter. 2008. IECON 2008. 34th Annual Conference of IEEE: pp. 158 – 163.

12.    Liu, Y., Sheng, C. and Nnanna, G. A. (2014). Detection of selected pharmaceutical contaminants and removal efficiency of emerging contaminants by application of membrane filtration technology. ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers.

13.    Watari, K., Takeda, S., Kobayashi, M., Uchida, M., Uenishi, M., Fukushima, N. and Hayashi, S. (2002). U.S. Patent No. 6,447,679. Washington, DC: U.S. Patent and Trademark Office.

14.    Kopp, C. V., Streeton, R. J. and Khoo, P. S. (1997). U.S. Patent No. 5,698,101. Washington, DC: U.S. Patent and Trademark Office.

15.    Tweddle, T. A., Striez, C., Tam, C. M. and Hazlett, J. D. (1992). Polysulfone membranes I. Performance comparison of commercially available ultrafiltration membranes. Desalination86(1): 27 – 41.

16.    Rezaei, M., Ismail, A. F., Hashemifard, S. A., Bakeri, G. and Matsuura, T. (2014). Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO2 separation process. International Journal of Greenhouse Gas Control26: 147 –157.

17.    Arthanareeswaran, G., Devi, T. S. and Mohan, D. (2009). Development, characterization and separation performance of organic–inorganic membranes: Part II. Effect of additives. Separation and Purification Technology67(3): 271 – 281.

18.    Mansourizadeh, A. and Ismail, A. F. (2010). Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO2 absorption. Journal of Membrane Science348(1): 260 –267.

19.    Cartwright, H. (2015). Artificial neural networks. Humana press: pp. 1 – 340.

20.    Karayiannis, N. and Venetsanopoulos, A. N. (2013). Artificial neural networks: Learning algorithms, performance evaluation, and applications. Springer Science & Business Media: pp. 1 – 345.

21.    Tardast, A., Rahimnejad, M., Najafpour, G., Ghoreyshi, A., Premier, G. C., Bakeri, G. and Oh, S. E. (2014). Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell. Fuel117: 697 – 703.

22.    Mirbagheri, S. A., Bagheri, M., Bagheri, Z. and Kamarkhani, A. M. (2015). Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm. Process Safety and Environmental Protection96: 111 – 124.

23.    Basile, A., Curcio, S., Bagnato, G., Liguori, S., Jokar, S. M. and Iulianelli, A. (2015). Water gas shift reaction in membrane reactors: Theoretical investigation by artificial neural networks model and experimental validation. International Journal of Hydrogen Energy40(17): 5897 – 5906.

24.    Ioannou, P. A., & Sun, J. (2012). Robust adaptive control. Courier Corporation: pp. 1 – 819.

 




Previous                    Content                    Next