Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 670 - 680
DOI:
https://doi.org/10.17576/mjas-2017-2103-16
POROSITY CONTROL
OF HOLLOW FIBER MEMBRANES USING A MODEL REFERENCE ADAPTIVE CONTROLLER
(Kawalan
Keliangan Membran Serat Berongga Menggunakan Model Pengawal Rujukan Adaptif)
Mohammad
Abbasgholipourghadim1*, Musa Bin Mailah1, Intan Z. Mat
Darus1, Masood Rezaei-Dasht Arzhandi2, Ahmad Fauzi Ismail2
1Department of Applied Mechanics and Design, Faculty
of Mechanical Engineering
2Advanced Membrane Technology Research Centre (AMTEC)
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: m.gholipour2010@gmail.com
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
The conventional simple feedback
controllers are not sometimes capable to properly perform online due to
different dynamics during porous hollow fiber membranes (HFMs) fabrication
process. This study implemented a model reference adaptive control (MRAC) for
fabricating HFMs with the desired overall porosity. The artificial neural
network (ANN) was used to identify the spinneret dynamic model. The developed
ANN model was used as the plant model in the implemented MRAC to control the
overall porosity of the HFMs. The proposed algorithms for controlling HFM
overall porosity were simulated in MATLAB/Simulink. The Massachusetts Institute
of Technology (MIT) rule was used for adaptive mechanism in the MRAC, where an
appropriate cost function was determined as a function of error between the
dynamic system and the reference output model. The controller parameters were
adjusted after minimizing the selected cost function. The obtained results from
the implemented MRAC scheme with MIT rule is found to be effective in
controlling the porosity of the membranes. However, it was revealed that the
system response is quite dependent on the changes of the input signal amplitude
(overall porosity). In addition, large adaptation values reduced the stability
of the system. Therefore, the MIT rule was normalized called as the normalized MIT
towards the system response to be independent from different values of the
porosity rule.
Keywords: hollow fiber membrane, overall porosity, model
reference adaptive control, artificial neural network
Abstrak
Pengawal konvensional tindak balas mudah kadangkala tidak mampu untuk
melaksanakan tugas dalam talian kerana faktor dinamik yang berbeza semasa
proses fabrikasi terhadap bahan membran serat berongga (HFM). Kajian ini
menggunakan kawalan adaptif model rujukan (MRAC) untuk menghasilkan HFM dengan keliangan
keseluruhan yang dikehendaki. Rangkaian neural
buatan (ANN) telah digunakan untuk mengenal pasti model dinamik
spinneret. Model ANN telah dibangunkan sebagai model sistem dinamik dalam MRAC
untuk mengawal keliangan keseluruhan HFMs. Algoritma yang dicadangkan untuk
mengawal keliangan keseluruhan HFM telah disimulasikan dalam MATLAB/Simulink.
Peraturan MIT telah digunakan untuk mekanisme adaptif dalam MRAC dengan fungsi
kos yang sesuai ditentukan sebagai fungsi ralat di antara model sistem dinamik dan
rujukan keluaran. Parameter pengawal telah dapat diselaraskan selepas
meminimumkan fungsi kos yang dipilih. Keputusan yang diperolehi daripada skim
MRAC dengan peraturan MIT menunjukkan bahawa ia dapat mengawal keliangan
membrane dengan berkesan. Walau bagaimanapun, tindak balas sistem ini didapati
agak bergantung kepada perubahan amplitud isyarat masukan (keliangan
keseluruhan). Di samping itu, nilai adaptasi tinggi mengurangkan kestabilan
sistem. Dengan yang demikian, peraturan MIT telah diselaraskan dipanggil
sebagai MIT diselaras ke arah menghasilkan tindak balas sistem yang bebas
daripada perbezaan nilai peraturan keliangan.
Kata kunci: membran serat berongga, keliangan
keseluruhan, kawalan adaptif model rujukan, rangkaian neural buatan
References
1.
Zhang, L., Shi, G. Z., Qiu, S., Cheng, L. H.
and Chen, H. L. (2011). Preparation of high-flux thin film nanocomposite
reverse osmosis membranes by incorporating functionalized multi-walled carbon
nanotubes. Desalination and
Water Treatment, 34(1-3): 19 – 24.
2.
Tang, K. S., Man, K. F., Chen, G. and Kwong, S.
(2001). An optimal fuzzy PID controller. IEEE Transactions on
Industrial Electronics, 48(4):
757 – 765.
3.
Rubaai, A., Castro-Sitiriche, M. J. and Ofoli,
A. R. (2008). DSP-based laboratory implementation of hybrid fuzzy-PID
controller using genetic optimization for high-performance motor drives. IEEE Transactions on Industry
Applications, 44(6): 1977 – 1986.
4.
Sun, D. and Meng, J. (2006). A single
neuron PID controller based PMSM
DTC drive system fed
by fault tolerant 4-switch 3-phase inverter. Industrial Electronics and
Applications, 2006 1ST IEEE Conference: pp. 1 – 5.
5.
Yao, J., Wang, L., Wang, C., Zhang, Z. and Jia,
P. (2008). ANN-based PID controller for an electro-hydraulic servo system. 2008
IEEE International Conference on Automation and Logistics: pp. 18 – 22
6.
Koo, T. J. (2001). Stable model reference
adaptive fuzzy control of a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 9(4):
624 – 636.
7.
Tsai, P. Y., Huang, H. C., Chen, Y. J. and
Hwang, R. C. (2004). The model reference control by auto-tuning PID-like fuzzy
controller. Proceedings of the 2004 IEEE International Conference: pp.
406 –411.
8.
Ehsani, M. S. (2007). Adaptive control of servo
motor by MRAC method. 2007 IEEE Vehicle Power and Propulsion Conference:
pp. 78 – 83
9.
Swarnkar, P., Jain, S. and Nema, R. K. (2010).
Application of model reference adaptive control scheme to second order system
using MIT rule. International Conference on Electrical Power and Energy
Systems (ICEPES-2010), MANIT, Bhopal, India.
10.
Chen, Y., Wu, J. and Cheung, C. N. (2004).
Lyapunov’s stability theory-based model reference adaptive control for
permanent magnet linear motor drives. Power
Electronics Systems and Applications, 2004. Proceedings: pp. 260 – 266.
11.
Stefanello, M., Kanieski, J. M., Cardoso, R.
and Grundling, H. A. (2008). Design of
a robust model reference adaptive
control for a shunt active power filter. 2008. IECON 2008. 34th
Annual Conference of IEEE: pp. 158
– 163.
12.
Liu, Y., Sheng, C. and Nnanna, G. A. (2014).
Detection of selected pharmaceutical contaminants and removal efficiency of
emerging contaminants by application of membrane filtration technology. ASME
2014 International Mechanical Engineering Congress and Exposition. American
Society of Mechanical Engineers.
13.
Watari, K., Takeda, S., Kobayashi, M., Uchida,
M., Uenishi, M., Fukushima, N. and Hayashi, S. (2002). U.S. Patent No. 6,447,679.
Washington, DC: U.S. Patent and Trademark Office.
14.
Kopp, C. V., Streeton, R. J. and Khoo, P. S.
(1997). U.S. Patent No. 5,698,101.
Washington, DC: U.S. Patent and Trademark Office.
15.
Tweddle, T. A., Striez, C., Tam, C. M. and
Hazlett, J. D. (1992). Polysulfone membranes I. Performance comparison of
commercially available ultrafiltration membranes. Desalination, 86(1): 27 – 41.
16.
Rezaei, M., Ismail, A. F., Hashemifard, S. A.,
Bakeri, G. and Matsuura, T. (2014). Experimental study on the performance and
long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes
for CO2 separation process. International Journal of
Greenhouse Gas Control, 26:
147 –157.
17.
Arthanareeswaran, G., Devi, T. S. and Mohan, D.
(2009). Development, characterization and separation performance of
organic–inorganic membranes: Part II. Effect of additives. Separation
and Purification Technology, 67(3):
271 – 281.
18.
Mansourizadeh, A. and Ismail, A. F. (2010).
Effect of additives on the structure and performance of polysulfone hollow
fiber membranes for CO2 absorption. Journal of Membrane
Science, 348(1): 260
–267.
19.
Cartwright, H. (2015). Artificial neural networks. Humana
press: pp. 1 – 340.
20.
Karayiannis, N. and Venetsanopoulos, A. N.
(2013). Artificial neural
networks: Learning algorithms, performance evaluation, and applications.
Springer Science & Business Media: pp. 1 – 345.
21.
Tardast, A., Rahimnejad, M., Najafpour, G.,
Ghoreyshi, A., Premier, G. C., Bakeri, G. and Oh, S. E. (2014). Use of
artificial neural network for the prediction of bioelectricity production in a
membrane less microbial fuel cell. Fuel, 117: 697 – 703.
22.
Mirbagheri, S. A., Bagheri, M., Bagheri, Z. and
Kamarkhani, A. M. (2015). Evaluation and prediction of membrane fouling in a
submerged membrane bioreactor with simultaneous upward and downward aeration
using artificial neural network-genetic algorithm. Process Safety and
Environmental Protection, 96:
111 – 124.
23.
Basile, A., Curcio, S., Bagnato, G., Liguori,
S., Jokar, S. M. and Iulianelli, A. (2015). Water gas shift reaction in
membrane reactors: Theoretical investigation by artificial neural networks
model and experimental validation. International Journal of Hydrogen
Energy, 40(17): 5897 –
5906.
24.
Ioannou, P. A., & Sun, J. (2012). Robust adaptive control. Courier
Corporation: pp. 1 – 819.