Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 518 - 528

DOI: https://doi.org/10.17576/mjas-2017-2102-27

 

 

PHYSIOCHEMICAL CHANGES AND MASS BALANCE OF RAW AND ALKALINE PRE-TREATED OIL PALM FROND: PRESSED AND

NON-PRESSED SAMPLE

 

(Perubahan Fisiokimia dan Imbangan Jisim Pelepah Kelapa Sawit Asli dan Terawat Alkali: Sampel Perah dan Tidak Terperah)

 

Nurul Aina Fauzi1, Shuhaida Harun1,2*, Jamaliah Md Jahim1,2

 

1Department of Chemical and Process Engineering

2Research Centre for Sustainable Process Technology (CESPRO)

Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: harun.shuhaida@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Malaysia is the world second largest palm oil producer after Indonesia. Oil palm industry has generated approximately 83 million tonnes (wet weight) of Oil Palm Frond (OPF) annually from the production of crude palm oil and palm kernel oil. Thus, the abundantly available OPF as solid agrowaste is creating environmental problems and economically attractive approach is needed to effectively and efficiently utilize the OPF waste. In order to fully utilized OPF lignocellulosic biomass, the chemical composition in the oil palm frond fibre (OPFF) was quantified by conducted the standard Laboratory Analytical Procedure (LAP) developed by National Renewable Energy Laboratory (NREL). Alkaline pre-treatment by using sodium hydroxide (NaOH) was done toward the raw OPF (ROPF) as a step to breakdown the lignin structure and thus enhance the porosity of the biomass. This study also compares the physiochemical changes with mass balance for raw non-pressed OPF (RNPOPF), raw pressed OPF (RPOPF), pre-treated non-pressed OPF (PNPOPF) and pre-treated pressed OPF (PPOPF). Through this study, available sugar in the form of fresh juice obtained from pressing the ROPF contain 2.15 ± 0.01% glucose, 0.45 ± 0.02% sucrose and 0.10 ± 0.05% fructose. Meanwhile the RPOPF bagasse gave 61.42 ± 2.41% of total structural carbohydrate. RNPOPF fibre on the other hand gave 69.06 ± 1.50% of total structural carbohydrate on corrected dry weight basis. The physical morphological changes of each corresponding sample structure were viewed by using the scanning electron microscopy (SEM) analysis.

 

Keywords:   non-pressed oil palm frond, pressed oil palm frond, compositional analysis, NaOH pre-treatment, mass balance

 

Abstrak

Malaysia merupakan pengeluar minyak kelapa sawit kedua terbesar di dunia selepas Indonesia. Industri kelapa sawit menghasilkan sebanyak 83 juta tan (berat basah) pelepah kelapa sawit setiap tahun daripada pemprosesan minyak sawit mentah dan minyak isirong sawit. Dengan kehadiran besar jumlah pelepah kelapa sawit sebagai sisa buangan pepejal, ianya telah menyebabkan pencemaran alam sekitar dan langkah – langkah yang efektif serta sistematik secara ekonominya di perlukan untuk menggunakan sepenuhnya pelepah kelapa sawit ini. Dalam mengoptimumkan pengunaan lignosellulosa pelepah kelapa sawit, komposisi kimia yang terdapat di dalam fiber pelepah kelapa sawit (OPFF) ditentukan dengan menjalankan Prosedur Analitikal Makmal (LAP) yang dibangunkan oleh Makmal Tenaga di Perbaharui Kebangsaan (NREL). Pra-rawatan alkali dengan menggunakan natrium hidroksida (NaOH) dilakukan terhadap sampel mentah sawit (ROPF) sebagai satu langkah untuk memecahkan struktur lignin dan meningkatkan bukaan liang sampel. Kajian ini membandingkan juga perubahan fisiokimia dengan keseimbangan jisim untuk pelepah kelapa sawit mentah tidak terperah (RNPOPF), pelepah kelapa sawit mentah terperah (RPOPF), pra-rawat pelepah kelapa sawit tidak terperah (PNPOPF) dan juga pra-rawat pelepah kelapa sawit terperah (PPOPF). Melalui kajian ini, gula yang terdapat di dalam bentuk jus segar daripada memerah pelepah kelapa sawit mentah (ROPF) mengandungi 2.15 ± 0.01% glukosa, 0.45 ± 0.02% sukrosa dan juga 0.10 ± 0.05% fruktosa.  Sementara itu, hampas RPOPF memberikan 61.42 ± 2.41% keseluruhan struktur karbohidrat. Fiber RNPOPF pula memberikan 69.06 ± 1.50% keseluruhan struktur karbohidrat pada berat kering. Perubahan morfologi fizikal untuk setiap struktur sampel dilihat dengan menggunakan analisis  mikroskop imbasan elektron (SEM).

 

Kata kunci:    pelepah kelapa sawit tidak terperah, pelepah kelapa sawit terperah, analisis komposisi, pra-rawatan NaOH, keseimbangan jisim

 

References

1.       Musatto, S. I. and Teixera, J. A. (2010). Lignocellulose as raw material in fermentable processes. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2: 897 – 907.

2.       Malherbe, S. and Cloete, T. E. (2003). Lignocellulose biodegradation: Fundamentals and applications. Reviews in Environmental Science and Biotechnology, 1: 105 – 114.

3.       Abdullah, S. S. S., Shirai, Y., Bahrin, E. K. and Hassan, M. A. (2015). Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Industrial Crops and Products, 63: 357 – 361.

4.       Goh, C. S., Tan, K. T., Lee, K. T.  and Bhatia, S. (2010). Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 101(13): 4834 – 4841.

5.       Malaysian Palm Oil Board (2009). Monthly fresh fruit bunches received by mills: 2008 (Tonnes). Acess online from http://econ.mpob.gov.my/economy/annual/stat2008/pdf. Accessed date August 2015.

6.       Howard, R. L., Abotsi, E., Van Rensburg, E. J. and Howard, S. (2003). Lignocellulose biotechnology: Issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12): 602 – 619.

7.       Malaysian Palm Oil Council (2010). Palm oil: A success story in green technology innovations, Acess online from: http://www.akademisains.gov.my/download/asmic/asmic2010/Plenary12.pdf. Accessed date 27 August 2015.

8.       Fazilah, A., Mohd Azemi, M. N., Karim, A. A. and Norakma, M. N. (2009). Physicochemical properties of hydrothermally treated hemicellulose from oil palm frond. Journal of Agricultural and Food Chemistry, 57(4): 1527 – 1531.

9.       Zahari, M. A. K. M., Zakaria, M. R., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y. and Hassan, M. A. (2012). Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology, 110: 566 – 571.

10.    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton, D. (2006). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory.

11.    Tan, H. T., Lee, K. T. Lee and Rahman, M. (2011). Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]CI for glucose recovery: An optimization study using response surface methodology. Carbohydrate Polymers, 83: 1862 – 1868.

12.    Garlock, R. J., Balan, V., Dale, B. E., Pallapolu, V. R., Lee, Y. Y., Kim, Y., Mosier, N. S., Ladisch, M. R., Holtzapple, M. T., Falls, M. and Sierra-Ramirez, R. (2011). Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresource Technology, 102(24): 11063 – 11071.

13.    Yang, Q. B and Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24): 9624 – 9630.

14.    Mohd Sukri, S. S., Rahman, A., Md Illias, R. and Yaakob, H. (2014). Optimization of alkaline pretreatment conditions of oil palm fronds in improving the lignocelluloses contents for reducing sugar production. Romanian Biotechnological Letters, 19 (1): 9007 – 9018.

15.    Saifuddin, N. M., Palanisamy, K. and Hussain, R. (2013). Microwave-assisted alkaline pretreatment and microwave assisted enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced fermentable sugar yield. Journal of Sustainable Bioenergy Systems, 3(1): 7 – 17.

16.    Abdul, P. M., Harun, S., Md Jahim, J., Markom, M. and Hassan, O. (2011). Effect of column's temperature and evaluation of RID and ELSD as suitable ion exchange HPLC detection method of simple sugars. Journal of Science and Technology, 2011: 599 – 604.

17.    Sun, S., Sun, S., Cao, X. and Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 199: 49 – 58.

18.    Aisyah, M. S, Uemura, Y. and Yusup, S. (2014). The effect of alkaline addition in hydrothermal pretreatment of empty fruit bunhes on enyzmatic hydrolysis efficiencies. Procedia Chemistry, 9: 151 –157.

19.    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6): 675 – 685.

20.    Chang, V. S., Burr, B. and Holtzapple, M. T. (1997). Lime pretreatment of switch grass. Applied Biochemistry and Biotechnology, 63: 3 – 19.

21.    Ilgook, K. and Han, J. I. (2012). Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass and Bioenergy, 46: 210 – 217.

22.    Lai, L. W. and Idris, A. (2013). Disruption of oil palm trunks and fronds by microwave-alkali pretreatment. Bioresources, 8(2): 2792 – 2804.

 




Previous                    Content                    Next