Malaysian
Journal of Analytical Sciences Vol 21 No 2 (2017): 518 - 528
DOI:
https://doi.org/10.17576/mjas-2017-2102-27
PHYSIOCHEMICAL
CHANGES AND MASS BALANCE OF RAW AND ALKALINE PRE-TREATED OIL PALM FROND:
PRESSED AND
NON-PRESSED
SAMPLE
(Perubahan
Fisiokimia dan Imbangan Jisim Pelepah Kelapa Sawit Asli dan Terawat Alkali:
Sampel Perah dan Tidak Terperah)
Nurul Aina Fauzi1, Shuhaida Harun1,2*, Jamaliah Md Jahim1,2
1Department of Chemical and Process Engineering
2Research Centre for
Sustainable Process Technology (CESPRO)
Faculty
of Engineering and Built Environment
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: harun.shuhaida@ukm.edu.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
Malaysia is the world second largest palm oil
producer after Indonesia. Oil palm industry has generated approximately 83
million tonnes (wet weight) of Oil Palm Frond (OPF) annually from the
production of crude palm oil and palm kernel oil. Thus, the abundantly
available OPF as solid agrowaste is creating environmental problems and
economically attractive approach is needed to effectively and efficiently
utilize the OPF waste. In order to fully utilized OPF lignocellulosic biomass,
the chemical composition in the oil palm frond fibre (OPFF) was quantified by
conducted the standard Laboratory Analytical
Procedure (LAP) developed by National Renewable Energy Laboratory (NREL).
Alkaline pre-treatment by using sodium hydroxide (NaOH) was done toward the raw
OPF (ROPF) as a step to breakdown the lignin structure and thus enhance the
porosity of the biomass. This study also compares the physiochemical changes
with mass balance for raw non-pressed OPF (RNPOPF), raw pressed OPF (RPOPF),
pre-treated non-pressed OPF (PNPOPF) and pre-treated pressed OPF (PPOPF).
Through this study, available sugar in the form of fresh juice obtained from
pressing the ROPF contain 2.15 ± 0.01% glucose, 0.45 ± 0.02% sucrose and 0.10 ±
0.05% fructose. Meanwhile the RPOPF bagasse gave 61.42 ±
2.41% of total structural carbohydrate. RNPOPF fibre on the other hand gave
69.06 ± 1.50% of total structural carbohydrate on corrected
dry weight basis. The physical morphological changes of each corresponding
sample structure were viewed by using the scanning electron microscopy (SEM)
analysis.
Keywords: non-pressed oil palm frond, pressed oil palm frond,
compositional analysis, NaOH pre-treatment, mass balance
Abstrak
Malaysia merupakan pengeluar minyak kelapa sawit kedua terbesar di dunia
selepas Indonesia. Industri kelapa sawit menghasilkan sebanyak 83 juta tan
(berat basah) pelepah kelapa sawit setiap tahun daripada pemprosesan minyak
sawit mentah dan minyak isirong sawit. Dengan kehadiran besar jumlah pelepah
kelapa sawit sebagai sisa buangan pepejal, ianya telah menyebabkan pencemaran
alam sekitar dan langkah – langkah yang efektif serta sistematik secara
ekonominya di perlukan untuk menggunakan sepenuhnya pelepah kelapa sawit ini.
Dalam mengoptimumkan pengunaan lignosellulosa pelepah kelapa sawit, komposisi
kimia yang terdapat di dalam fiber pelepah kelapa sawit (OPFF) ditentukan
dengan menjalankan Prosedur Analitikal Makmal (LAP) yang dibangunkan oleh
Makmal Tenaga di Perbaharui Kebangsaan (NREL). Pra-rawatan alkali dengan
menggunakan natrium hidroksida (NaOH) dilakukan terhadap sampel mentah sawit
(ROPF) sebagai satu langkah untuk memecahkan struktur lignin dan meningkatkan
bukaan liang sampel. Kajian ini membandingkan juga perubahan fisiokimia dengan
keseimbangan jisim untuk pelepah kelapa sawit mentah tidak terperah (RNPOPF),
pelepah kelapa sawit mentah terperah (RPOPF), pra-rawat pelepah kelapa sawit
tidak terperah (PNPOPF) dan juga pra-rawat pelepah kelapa sawit terperah
(PPOPF). Melalui kajian ini, gula yang terdapat di dalam bentuk jus segar
daripada memerah pelepah kelapa sawit mentah (ROPF) mengandungi 2.15 ±
0.01% glukosa, 0.45 ± 0.02% sukrosa dan juga 0.10 ±
0.05% fruktosa. Sementara itu, hampas
RPOPF memberikan 61.42 ± 2.41% keseluruhan struktur karbohidrat.
Fiber RNPOPF pula memberikan 69.06 ± 1.50% keseluruhan struktur karbohidrat
pada berat kering. Perubahan morfologi fizikal untuk setiap struktur sampel
dilihat dengan menggunakan analisis
mikroskop imbasan elektron (SEM).
Kata kunci: pelepah kelapa sawit tidak
terperah, pelepah kelapa sawit terperah, analisis komposisi, pra-rawatan NaOH,
keseimbangan jisim
References
1.
Musatto, S. I. and Teixera, J. A. (2010). Lignocellulose as raw material in fermentable
processes. Current Research, Technology and Education Topics in Applied
Microbiology and Microbial Biotechnology, 2: 897 – 907.
2.
Malherbe, S. and Cloete, T. E. (2003).
Lignocellulose biodegradation: Fundamentals and applications. Reviews in
Environmental Science and Biotechnology, 1: 105 – 114.
3.
Abdullah, S. S. S., Shirai,
Y., Bahrin, E. K. and Hassan, M. A. (2015). Fresh oil palm frond juice as a
renewable, non-food, non-cellulosic and complete medium for direct bioethanol
production. Industrial Crops and Products, 63: 357 – 361.
4.
Goh, C. S., Tan, K. T., Lee, K. T. and Bhatia, S. (2010). Bio-ethanol from lignocellulose:
Status, perspectives and challenges in Malaysia. Bioresource Technology, 101(13):
4834 – 4841.
5.
Malaysian Palm Oil Board
(2009). Monthly fresh fruit bunches received by mills: 2008 (Tonnes). Acess
online from http://econ.mpob.gov.my/economy/annual/stat2008/pdf. Accessed date
August 2015.
6.
Howard, R. L., Abotsi, E.,
Van Rensburg, E. J. and Howard, S. (2003). Lignocellulose biotechnology: Issues
of bioconversion and enzyme production. African Journal of Biotechnology,
2(12): 602 – 619.
7.
Malaysian Palm Oil Council
(2010). Palm oil: A success story in green technology innovations, Acess online
from: http://www.akademisains.gov.my/download/asmic/asmic2010/Plenary12.pdf.
Accessed date 27 August 2015.
8.
Fazilah, A., Mohd Azemi, M.
N., Karim, A. A. and Norakma, M. N. (2009). Physicochemical properties of
hydrothermally treated hemicellulose from oil palm frond. Journal of
Agricultural and Food Chemistry, 57(4): 1527 – 1531.
9.
Zahari, M. A. K. M., Zakaria,
M. R., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y. and Hassan, M. A.
(2012). Renewable sugars from oil palm frond juice as an alternative novel fermentation
feedstock for value-added products. Bioresource Technology, 110: 566 –
571.
10. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C.,
Sluiter, J. and Templeton, D. (2006). Determination of sugars, byproducts, and
degradation products in liquid fraction process samples. Golden: National
Renewable Energy Laboratory.
11. Tan, H. T., Lee, K. T. Lee and Rahman, M. (2011).
Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid
[BMIM]CI for glucose recovery: An optimization study using response surface
methodology. Carbohydrate Polymers,
83: 1862 – 1868.
12. Garlock, R. J., Balan, V., Dale, B. E., Pallapolu, V.
R., Lee, Y. Y., Kim, Y., Mosier, N. S., Ladisch, M. R., Holtzapple, M. T.,
Falls, M. and Sierra-Ramirez, R. (2011). Comparative material balances around
pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresource
Technology, 102(24): 11063 – 11071.
13. Yang, Q. B and Wyman, C. E. (2010). Xylooligomers are
strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24): 9624 – 9630.
14. Mohd Sukri, S. S., Rahman, A., Md Illias, R. and
Yaakob, H. (2014). Optimization of alkaline pretreatment conditions of oil palm
fronds in improving the lignocelluloses contents for reducing sugar production.
Romanian Biotechnological Letters, 19
(1): 9007 – 9018.
15. Saifuddin, N. M., Palanisamy, K. and Hussain, R.
(2013). Microwave-assisted alkaline pretreatment and microwave assisted
enzymatic saccharification of oil palm empty fruit bunch fiber for enhanced
fermentable sugar yield. Journal of
Sustainable Bioenergy Systems, 3(1): 7 – 17.
16. Abdul, P. M., Harun, S., Md Jahim, J., Markom, M. and
Hassan, O. (2011). Effect of column's temperature and evaluation of RID and
ELSD as suitable ion exchange HPLC detection method of simple sugars. Journal of Science and Technology, 2011: 599 – 604.
17. Sun, S., Sun, S., Cao, X. and Sun, R. (2016). The
role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic
biomass. Bioresource Technology, 199:
49 – 58.
18. Aisyah, M. S, Uemura, Y. and Yusup, S. (2014). The
effect of alkaline addition in hydrothermal pretreatment of empty fruit bunhes
on enyzmatic hydrolysis efficiencies. Procedia
Chemistry, 9: 151 –157.
19. Agbor, V. B., Cicek, N., Sparling, R., Berlin, A. and
Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6): 675 –
685.
20. Chang, V. S., Burr, B. and Holtzapple, M. T. (1997).
Lime pretreatment of switch grass. Applied
Biochemistry and Biotechnology, 63: 3 – 19.
21. Ilgook, K. and Han, J. I. (2012). Optimization of
alkaline pretreatment conditions for enhancing glucose yield of rice straw by
response surface methodology. Biomass and
Bioenergy, 46: 210 – 217.
22. Lai, L. W. and Idris, A. (2013). Disruption of oil
palm trunks and fronds by microwave-alkali pretreatment. Bioresources, 8(2): 2792 – 2804.