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Abstract

In this study the synthesis, characterization and catalytic.performance of CeO, (Ceria) supported Co catalyst was investigated.
First, the ceria was synthesized by direct thermal decompasition of Ce(NO3)3.6H,0 and subsequently impregnated with 20 wt.%
Co using aqueous solution of Co(NO,),.6H,0 as a precursor. The synthesized catalyst was characterized using TGA, N,-
adsorption-desorption, X-ray Diffractometry (XRD), Field Emission Scanning Electron Microscope (FESEM-EDX), and Fourier
Transformation Infrared (FTIR). The catalytic. property of the ceria-supported cobalt catalyst was tested in methane dry
reforming using a stainless steel fixed bed reactor. The dry reforming reaction was performed at the temperature range of 923-
1023 K under a controlled atmospheric pressure.and constant gas hourly space velocity (GHSV) of 30000 h™. The effects of
reactant (CH, and CO,) feed ratio was:investigated on reactants conversion, product yields, and selectivity. The ceria-supported
cobalt catalyst recorded highest catalytic activity at a CH,: CO, ratio of 0.9 and temperature of 1023 K. The highest values of
79.5% and 87.6% were recorded for the CH, and CO, conversions respectively. Furthermore, highest yields of 41.98% and
39.76%, as well as selectivity of 19.56% and 20.72%, were obtained for H, and CO respectively. Syngas ratio of 0.90 was
obtained from the dry reforming.of methane, making it suitable as feedstock for Fischer-Tropsch synthesis (FTS).
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Abstrak

Dalam kajian ini, sintesis, pencirian berserta prestasi tindakbalas pemangkin Co/CeO, telah dijalankan. Terdahulu, ceria
disintesis daripada penguraian terma secara langsung ke atas Ce(NO3)3.6H,0, diikuti oleh formulasi dengan 20% logam Co
menggunakan larutan akueus Co(NOs),.6H,0 sebagai pelopor. Mangkin yang diperolehi dicirikan dengan menggunakan kaedah
TGA, N,-penjerapan penyaherapan, pembelauan sinar X (XRD), Mikroskop Pengimbas Elektron Pancaran Medan — Sinar-X
Serakan Tenagan (FESEM-EDX) dan Inframerah Tranformasi Fourier (FTIR). Prestasi pemangkin Co/CeO, telah diuji untuk
tindakbalas penghasilan metana kontang di dalam reaktor keluli tahan karat. Tindakbalas kimia tersebut telah dijalankan pada
suhu berjulat daripada 923-1023 K, tekanan 1 atm serta GHSV bersamaan 30000 h™. Kesan nishah reaktan (CH, and CO,)
terhadap penukaran reaktan serta hasil dan pemilihan produk telah disiasat. Mangkin Co/CeQ, mencatatkan aktiviti pemangkin
paling tinggi pada nisbah CH,/CO, bersamaan 0.9 dan suhu 1023 K. Penukaran CH, and CO, mencatatkan nilai tertinggi
bersamaan 79.5% dan 87.6%. Tambahan pula, hasil tertinggi bersamaan 37.6% dan 40% berserta sifat pemilihan bersamaan
19.56% dan 20.72% untuk H, dan CO telah direkodkan. Nisbah gas sintesis bersamaan 0.9 telah diperolehi daripada penghasilan
semula metana kontang bersesuaian untuk tindakbalas sintesis Fischer-Trosch.
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Introduction

The utilization of energy derived from fossil sources as transportation fuel has been one of the major concerns of
researchers in the past five decades [1,2]. This is due to the emissions of greenhouse gases such as CO, into the
biosphere during the combustion of these fuels [3,4]. Several reports have shown that these greenhouse gases are the
main causes of global warming through “greenhouse effect” [5-7]. Efforts of researchers have been concentrated on
how to mitigate the emissions of these greenhouse gases [3,8,9]. Methane (CH,) is one of the key components of
greenhouse gases as well as a major source of fossil fuel [10]. It is inexpensive and abundance in nature, hence a
good building block for C; chemistry [11]. One way to mitigate the emissions of the greenhouse/gases, as well as
increasing energy output via dry reforming process [9].

Dry reforming of methane depicted in Equation (1) has received wide research attention due to its advantage to
utilize both CO, and CH,, the two principal components of greenhouse gases for praduction of synthesis gas (a
mixture of H, and CO) [12-14]. This syngas can be used as chemical intermediates-for the production of synthetic
fuel via Fischer-Tropsch synthesis (FTS) [15,16].

€O, + CH, - H, +CO AH, 53 =261kJmol =t 1)

Dry reforming of methane as a highly endothermic process is majorly constraint with catalyst deactivation from
sintering and carbon deposition [17,18]. There have been concerted efforts by researchers in the field of catalysis in
designing and developing catalysts with high activity and stability to overcome challenges of sintering and carbon
depositions [19,20].

Up to date, the activity and stability of supported metal-based catalysts such as Pt, Pd, Ru, Rh, Ir, Ni and Co, have
been investigated for dry reforming of methane [21]. Reports have shown that supported noble metals catalysts such
as Pt, Pd, Ru, Rh, and Ir are very active and highly-stable during dry reforming of methane [22-24]. However, these
noble-metal catalysts are not readily available and very expensive [25]. Hence, the application of these noble metals
to catalyze dry reforming of methane will not be economical in the event of scale up. Supported Ni-based catalysts
have high activity and are inexpensive [26]. Nevertheless, the usage of Ni-based catalysts in dry reforming of
methane has been constraint by their susceptibility to catalyst deactivation via sintering and carbon depositions [27].
Supported Co-catalyst which is less expensive compared to noble-metal catalysts has been reported as a good
alternative to Ni-based catalysts in.terms of stability [28].

In addition to using good metal-based catalysts, its play a significant role in enhancing the thermal stability of
catalysts during dry reforming of methane [29]. Reports have shown that efficient dispersion of active metals on
supports such as SiOgwa-Al,03.Ce0,, La,05 and ZrO, to a large extent affect the pore morphology, confinement and
chemical effect of the catalysts [30]; [14]. This will invariably retard coke formation as well as reduce the tendency
of the active metal to sinter. The use of ceria (CeO,)-supported Co catalyst has been extensively studied for ethanol
steam reforming [31-33]. However, there are limited studies on the dry reforming of methane over ceria supported
Co catalyst [34, 35].

This present.study focuses on the synthesis, characterization and catalytic performance of ceria supported Co
catalyst for dry reforming of methane. The ceria support was prepared by thermal decomposition of cerium (l11)
nitrate hexahydrate and subsequently used for the synthesis of the Co/CeQ, catalyst via wet impregnation method
[36].

Materials and Methods
Catalyst synthesis
The schematic diagram depicting the steps involved in the catalyst synthesis is shown in Figure 1. First, the ceria
support used for the catalyst synthesis was prepared by thermal decomposition of Ce(NO3);.6H,0 (99.99% trace
metal basis, Sigma-Aldrich) at 773 K for 2 hours to obtained CeO, powder [36,37]. The CeO, powder was
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subsequently impregnated with aqueous solution of Co(NOs),.6H,O (20 wt% Co loading) by wet impregnation
method and then stirred continuously for 3 hours at room temperature. Thereafter, the mixture containing the
catalyst precursor and the support was dried at 393 K for 24 hours and then calcinate at 873 K for 5 hours.

Catalyst characterization

The physicochemical properties of the fresh 20 wt% Co/CeO, catalyst were determined by temperature programmed
calcination using thermogravimetric analyzer (TA instrument, Q 500). The catalyst sample was heated from 298 to
1173 K at heating rates of 10, 15 and 20 K/min. The specific surface area, pore volume and average pore diameter
of the catalyst were measured by N, adsorption-desorption isotherm at 77 K using Thermo Scientific Surfer
Analyzer. Prior to the N, adsorption-desorption experiment, the catalyst was degassed at 573 K for-3-hours. Phase
identification, as well as the crystallinity of the 20 wt% Co/CeO, catalyst, was determined by Rigaku X-ray powder
diffraction analysis (XRD) (Miniflex II) with Cu Ka (45kV, 0.154 nm) radiation.

The morphology and elemental composition of the catalyst sample were carried out using JEOL FESEM (JSM-
7800F) equipped with EDX. Temperature-programmed reduction (TPR) of the fresh catalyst was performed in a
fixed bed reactor. The catalyst weighing 200 mg was heated from 373 — 1073 K ina flow of 60 ml/min of H,/N,
(1:5). The amount of hydrogen consumed was measured using gas chromatography (GC) equipped with thermal
conductivity detector (TCD). The GC consists of two packed columns namely Supelco Molecular Sieve 13x (10 ft x
1/8 in OD x 2 mm ID, 60/80 mesh, Stainless Steel) and Agilent Hayesep DB (30 ft x 1/8 in OD x 2 mm ID,
100/120 mesh, Stainless Steel). Helium gas with flow rate of 20 ml mini* was used as the carrier at operating
column temperature of 393 K.

The nature of chemical bond of the catalyst was measured using Perkin Elmer Fourier transform infrared (FTIR)
(Nicolet iS-50) spectrometer. The sample was analysed using an attenuated total reflectance (ATR) method within
4000-400 cm™,
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Figure 1. Schematic diagram of steps involved in the synthesis of the 20 wt% Co/CeO, catalyst
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Cata|yst activity test
The catalyst activity test was performed in a stainless steel fixed bed reactor under controlled atmbspheric pressure.
The staynless steel tubular reactor was loaded with 200 mg catalyst sample supported with quagtz wool. The fixed
bed reacdr was positioned in a furnace equipped with a Type-K thermocouple to monitor thg temperature of th
catalytic bxd. Prior to the commencement of the activity test, the catalyst was reduced in situ igfa flow of 60 ml/mj
of Hy/N, (1%) at 873 K for 1 h. The flow of the reactant gases (CH4 and CO,) into the reactoy was monitored usyhg
Alicat digital\mass flow controller. The dry reforming of methane was performed at varyingffeed ratios ranged 0.1-
1.0 and reacti
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Figure 2. Temperature Progfarfimed Calcinatign of the 20 wt¥ Co/CeO, catalyst
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The determination of the mesoporous structure and specific surface of the 20 wt% Co/CeQ, catalyst from N,
adsorption-desorption isotherm is depicted in Figure 3. The Co/CeQ, catalyst isotherm has a characteristic of Type
IV isotherm curve with H3 hysteresis loop. Since the relative pressure (P/P°) is > 0.55, the catalyst exhibited
uniform mesoporous structure with capillary condensation. The BET specific area of the catalyst was estimated
from the sorptomatic data processing software as 39.89 m’g™ while the pore volume and average pore diameter
obtained from Barrett, Joyner, and Hallenda (BJH) method were estimated to be 0.0141 cm®g™, and 1.16 nm
respectively.
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Figure 3. N, adsorption-desorption.isothermof the 20 wt% Co/CeO, catalyst

The XRD pattern of the catalyst sample is depicted in Figure 4. Distinct peaks of CeO, and Co;0, crystals can be
seen at 20 = 29.4°, 38.4°, 48.7°, 57.9° and 20 = 31.3°, 44.5°, 59.7°, 65.1°, 67.7°, 77.1° respectively. The diffraction
peaks obtained for CeO, can be assigned.to the crystalline phase of (111), (220), (311), (220) and (422) which
represent faced-centre cubic structure [39].
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Figure 4. XRD pattern of the 20 wt% Co/CeO, catalyst
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The FESEM micrograph and EDX dot mapping showing the morphology and the elemental composition of the 20
wt% Co/CeO, catalyst are depicted in Figures 5-7 respectively. The FESEM micrograph (Figure 5) shows the
irregularity and the agglomeration of the catalyst particle sizes. While the EDX dot mapping (Figure 6) confirms the
presence of Co, Ce and O as stimulated during the synthesis of the catalyst. The elemental compositions of the
catalysts obtained from the EDX dot mapping (Figure 7) corresponds to the stimulated amount used for the catalysts
synthesis.
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Figure 7. The elemental composition of the 20 wt% Co/CeQ, catalyst obtained from EDX-mapping
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In order to check the reducibility of the catalyst in a flow of H,, the catalyst was subjected to H,-TPR. Significantly,
two peaks centralized at a temperature of 423, and 673 K can be identified from the H,-TPR profile. The peaks
could be attributed to the sequential reduction of Co30, to Co crystallite represented in equation 8. The peak at 423
K could be attributed to the reduction of Co30, which has a weak interaction with the support to CoO. The peak at
577K with a stronger interaction can be attributed to the reduction of CoO to Co [40].

€030, = Co0 — Co (8)
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Figure 8. H,-TRP profile of the 20 wt% Co/CeO, catalyst

The FTIR spectra of the catalyst are shown in Figure 92 The spectra band can be identified at 3400, 1670, 667 and
567 cm™ respectively. The bands at 3400 and.1670 cm™ can be attributed to OH™ which is due to water moisture and
COO from dissolved atmospheric CO,. The band obtained at 1670 and 667 cm™ can be attributed to stretching
metal oxides (M-O) bond from Co-O‘and Ce-O respectively.
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Figure 9. FTIR spectra of the 20 wt% Co/CeOQ, catalyst
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Catalyst activity

The performance of the ceria supported Co catalyst was measured from the conversions of the reactant gas to
syngas, the yields of the syngas produced as well as the products selectivity. The effects of feed ratios (0.1-1.0) and
temperature (923 — 1023K) were investigated on the catalyst activity in terms of conversions, yields, and selectivity
in methane dry reforming process. The conversions of CH, and CO, depicted in Figures 10 and 11 increases with
feed ratio and temperature signifying the temperature dependent nature of the dry reforming reaction. The
conversion of CH, increases from 43.2% to a maximum value of 79.5%. Similarly, conversion of CO, increases
from 17.8% to 87.6%. The catalyst shows higher activity towards CO, conversion compared to CH,. This could be
as a result of reversed water gas shift reaction shown in equation 9 [41].

CO, + H, » H,0 + CO  AH,o5 = 41kImol™ 9)
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Figure 10. Effect of feed ratio and temperature on conversion of CH, over 20 wt% Co/CeO, catalyst
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Figure 11. Effect of feed ratio and temperature on conversion of CO, over 20 wt% Co/CeO, catalyst.
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The catalytic performances of the 20 wt% Co/CeO, catalyst in term of products (CO and H,) yields are depicted in
Figures 12 and 13, respectively. It is noteworthy that both H, and CO vyields increase with feed ratios and
temperature. The yield of H, increases from 1.69% to reach a maximum value of 41.98%. While the yield of CO
increases from 6.56% to the maximum value of 39.76%. A similar observation has been reported by Sajjidi et al.
[42] for dry reforming of methane over Ni—Co/Al,03—ZrO, nanocatalyst. The highest yield of 42% and 58% were
obtained for H, and CO respectively. In the present study, at the highest yield of H, and CO, syngas ratio of 1.05
was obtained. This makes the syngas produced from the dry reforming of methane over the 20 wt% Co/CeO,
catalyst suitable as a chemical intermediate to produce oxygenated fuel via FTS. Apparently, the catalyst shows a
higher activity towards H, yield compared to CO yield. The observation could be attributed to temperature
dependent nature of CH, decomposition. The decomposition of CH, increases with temperature=leading to an
increase in the formation of H, [43].
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Figure 12. Effect of feed ratio and temperature on the yield of H, over 20 wt% Co/CeO, catalyst

45
40 - A
35 +

o 30 -

£ 25 -

S 20 -
15 -
10 - ¢ 923K
5 | H = 973 K
0 . A 10|23 K

0 0.5 1
CH,:CO, ratio

Figure 13. Effect of feed ratio and temperature on the yield of CO over 20 wt% Co/CeO, catalyst

The selectivity of the 20 wt% Co/CeO, catalyst towards H, and CO production is shown Figures 14 and 15,
respectively. The H, and CO selectivity significantly increase with feed ratio and temperature from 1.16% and
8.56% to reach a maximum value of 19.56% and 20.72% respectively. This observation is consistent with the
findings of Zheng et al. [44] who employed Co/y-Al,O3 for dry reforming of methane to syngas. The authors,
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however, obtain a higher selectivity of 95% and 85% for H, and CO. The difference in result could be linked to high
surface area y-Al,03 used as support compared to Ceria as well as the difference in experimental conditions.
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Figure 14. Effect of feed ratio and temperature on the selectivity of H, over 20 wt% Co/CeO, catalyst
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Figure 15. Effect of feed ratio and temperature on the selectivity of CO over 20 wt% Co/CeQ, catalyst

Conclusion

In this study; we have reported the synthesis, characterization and catalytic performance of ceria supported Co
catalyst. The catalyst was synthesized by wet impregnation method and characterized by different physicochemical
properties using techniques such as TGA, N,-adsorption-desorption, XRD, FESEM-EDX, and FTIR. The catalytic
performance of the as-synthesized catalyst was tested in dry reforming of methane for the production of syngas. The
catalyst shows good performance towards reactant conversion, products yield, and selectivity. Syngas ratio of 0.9
was produced from the dry reforming of methane over the ceria supported catalyst, making the process suitable for
the production of feedstock for FTS process.
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