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Abstract 
Protein Arginine Deiminase IV (PAD4) is a promising target for treating rheumatoid arthritis. Here, an in-silico screening was 
performed using PAD4 crystal structure against National Cancer Institute Diversity Set III compounds. Results obtained from the 
docking studies showed that the compounds have high affinity towards the protein. Visual inspections of the top compounds 
indicated that they preferred to bind at the front door of the catalytic pocket instead of the back door. The current results from 
this screening could provide a basis for the development of new PAD4 inhibitors.  
 
Keywords:  protein arginine deiminase IV, PAD4, virtual screening, NCI diversity set, structure-based 

 
Abstrak 

Protin arginina deiminase IV (PAD4) adalah sasaran yang berharapan untuk merawat artritis reumatoid. Di sini, satu saringan in-
silico telah dilakukan menggunakan struktur kristal PAD4 terhadap molekul dari Set Beraneka Institut Kanser Nasional III. 
Keputusan dari pengdokan molekular menunjukkan molekul-molekul tersebut mempunyai daya tarikan yang tinggi terhadap 
protin. Pemeriksaan secara visual ke atas molekul teratas menunjukkan mereka mempunyai kecenderungan untuk terikat di pintu 
hadapan poket katalisis daripada di pintu belakang. Keputusan daripada pencarian ini boleh menjadi asas kepada penemuan 
perencat PAD4 yang baru. 
 
Kata kunci:  protin arginina deiminase IV, PAD4, pencarian maya, set beraneka NCI, struktur berasas  

 
 

Introduction 
Protein citrullination is a post-translational modification process, which converts peptidyl-bound arginine into 
peptidyl-bound citrulline (see Figure 1) [1]. This process is catalyzed by calcium-dependent enzyme called protein 
arginine deiminase (PAD) [2]. To date, there are five PAD isozymes reported, namely PAD1, PAD2, PAD3, PAD4 
and PAD6, where each of them has specific expression place in human body [3]. Among all isozymes, PAD4 has 
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been linked to an inflammatory disease called rheumatoid arthritis [4]. Overexpression of PAD4 and citrullinated 
products was found to break the immune system tolerance and produce autoantibody responses against them, which 
consequently leads to the disease onset. Therefore, modulation of PAD4 activities is considered as an alternative 
therapeutic strategy against the disease.  
 
 

 
Figure 1.  Citrullination process to convert peptidylarginine to peptidylcitrulline 

 
 
Many researches have been conducted to design and discover PAD4 inhibitors. Based on the crystal structure of 
PAD4 in complex with small substrate, benzoyl-arginine amide [5], the citrullination process was catalyzed by four 
key residues, namely D350, H471, D473 and C645. These residues are arranged in a close proximity causing the 
overall shape of the pocket to be considerably narrow and deep. This significantly influenced PAD4 drug designs 
and studies were aimed at discovering an improved binding to one or more of the key residues [6-8]. Recent reports 
on PAD4 inhibitors [9] showed that the GSK compounds were binding the protein via another entrance of the 
catalytic pocket. The anchoring by residue N588 helps the GSK compounds to interact with H471 and distracts the 
protein activity. The knowledge about the entrance or the ‘back door’ has expanded the overall view of the pocket 
(Figure 2). 
 

Figure 2.  Two accessible doors of PAD4 catalytic pocket. Ligand such as o-F-amidine (rendered as blue stick) is 
bound at the front door. The main catalytic residue C645 is colored in yellow and H471 is colored in red. 

 
 
Structure-based virtual screening (SBVS) has become an essential tool for drug pre-screening [10]. This approach is 
dependent on three-dimensional structures of target of interest i.e. protein, in which specific location on the protein 
can be aimed. The underlying concept in SBVS is the use of molecular docking algorithm to predict ligand poses 
corresponds to target of interest [11]. The method to evaluate the poses may include binding energies/affinities and 
reasonable binding interactions. SBVS has been applied to the previous PAD4 inhibitor screening [12]; however, 
the study was limited to exploring the PAD4 front door. Considering the potential of the PAD4 back door, it is 
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important that both doors should participate during the screening process. Here, we report SBVS performed using 
PAD4 crystal structure. The subjects of this study are from the National Cancer Institute Diversity Set 3 (NCIDS3), 
which is a compilation of pharmacophores with diverse skeleton and functional groups [13]. The poses of the 
compounds were predicted and evaluated computationally. It is hoped that the findings from this study can provide 
insight for searching and improvising PAD4 inhibitors. 

 
Materials and Methods 

Molecular docking  
All molecular docking procedures were performed using AutoDock Vina program [14]. The crystal structure of 
PAD4 in complex with o-F-amidine inhibitors (PDB ID: 3B1U) [8] was used as receptor and control docking. 
Compounds from the previous PAD4 inhibitor screening were used as reference compounds [15]. The NCIDS3 
containing a total of 1880 ligands were downloaded in mol format from the ZINC database [16]. AutoDockTools 
version 1.5.6 [17] was used to add polar charges, assign Gasteiger charge [18] and prepare the input files.  
 
Covalent docking protocol was applied exclusively for the control since the inhibitor was bound to PAD4 
irreversibly [19-20]. This was achieved by docking a water molecule while setting the covalently bonded co-
crystallized ligand, o-F-amidine to the thiol group of C645 as flexible residue. The volume of the grid box was 27 Å 
by 31 Å by 36 Å with a 1.0 Å spacing. The grid box was placed on the coordinate of -26.69, 14.74 and -28.8 
centered on H640 to encompass both possible binding sites, namely the front door and the back door. The 
exhaustiveness was set to 8, while the number of run was set to 9. For the reference compounds and NCIDS3 
ligands, conventional rigid protein and flexible ligand docking were performed while maintaining all the docking 
parameters.  
 
In this work, the NCIDS3 ligands are referred to by their NCI index number (also known as the NSC number). For 
each ligand, the highest-affinity conformation of the docking result was selected as the docked pose for the ligand. 
The complexes were sorted by lowest binding affinity values. Complexes with predicted binding affinity equal to or 
less than -8.0 kcal/mol were filtered based on Lipinski’s rule of 5 [21], here describes as: 1) molecular weight less 
than 500 g/mol, 2) number of hydrogen bond donor less than 5, 3) number of hydrogen bond acceptor less than 10 
and 4) log P value less than 5. Only compounds that fulfilled all the criteria were further inspected. Analysis of the 
docking results was performed using AutoDock Vina shell script. The two-dimensional ligand structures were 
retrieved from chemicalize.org [22]. Analysis of binding interaction was performed using LigPlot+ [23]. 
Visualization and rendering routines for the docking complexes were done using Pymol version 1.4.1 [24].  

 
Results and Discussion 

Validation of docking parameters 
The o-F-amidine ligand was redocked in consistent manner as seen in the crystal structure as shown in Figure 3. The 
all-atom RMSD of the predicted pose with respect to its crystallized pose was 1.06 Å. The main difference between 
the docked pose and the crystallized pose was observed at the benzene carboxylate group. The group was interacting 
with inconsistent hydrophobic contact. Autodock 4 [25] was also tested as alternative docking tool, however higher 
RMSD value was found as compared to the one obtained using Vina. The redocking was successful, indicating that 
dependability of AutoDock Vina in predicting ligand experimental pose. 
 
In conventional virtual screening routine, the accuracy of any computational docking protocol is assessed using 
inhibitors with known activity against the target. It is a vital step in order to justify the current parameters used. 
Here in our case, we look forward to ensure that the protocol was suitable and reliable to distinguish and rank PAD4 
inhibitors. To achieve the goal, a set of compounds with known PAD4 inhibitions (here labeled as S1 to S12) 
reported by Bozdag et al. was used [15].   
 
 
 
 

Move
Figure 3 here
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Figure 3.  Redocking of o-F-amidine. The docked pose was rendered in green, while the crystallized structure was 

in purple 
 
 

Table 1.  Predicted binding affinity and ranks for compounds by Bozdag et al. [15]. The experimental inhibitions 
were listed for reference purposes. 

Compound % Inhibition 
at 10 µM 

Experimental 
Rank 

Predicted Binding affinity  
(kcal/mol) 

Predicted 
Rank 

S1 6 7 -5.7 7 
S2 3 9 -6.0 6 
S3 5 8 -6.2 5 
S4 1 10 -5.2 8 
S5 7 6 -6.0 6 
S6 5 8 -4.8 9 
S7 3 9 -6.2 5 
S8 8 5 -6.8 4 
S9 10 3 -6.9 3 
S10 34 2 -7.3 2 
S11 36 1 -7.4 1 
S12 9 4 -5.5 8 

 
 
Table 1 showed the experimental inhibition, experimental rank, predicted binding affinity and predicted rank for 
compounds S1-S12. As can be seen from the table, it was obvious that Vina fairly predict the ranking of each 
compound. There was undoubted correlation between the compounds which having the high inhibition and its 
predicted binding affinity. Visual inspection of the docked poses showed that 11 out of 12 compounds have 
preference to bind at the front door; only compound S5 was seen to occupy the back door. Although the compounds 
with low inhibition were not in the exact rank, but it did pick the overall binding trend. Vina was able to distinguish 
between the high-ranked compounds (i.e. compound S11) and the low-ranked compounds (i.e. compound S4). 
These results suggested that predicted ranking reflect the experimental ranking with moderate degree of accuracy.  
 
It is interesting to observe that ligands from NCIDS3 are in similar predicted binding affinity window as the known 
PAD4  inhibitors [15].  The plot of number of  ligands with respect to their binding affinity range as shown in 
Figure 4 followed a bell-shaped trend, with majority population lies within the range of -6.0 kcal/mol. In prior to 
this study, focus was given to compounds that were predicted to have binding affinity equal to or less than -8.0 
kcal/mol. This cut-off criterion of -8.0 kcal/mol was imposed as the first filter to yield compounds with predicted 
binding affinity lower than the predicted binding affinity of the known PAD4 inhibitors (see Table 1) [15]. Even 

Zalikha Ibrahim
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though this NCIDS3 screening have not yet been validated experimentally, the work here is promising, given that 
half of the shortlisted compounds were predicted to be binding the protein via similar interacting residues with that 
seen in the crystal structure [8]. All shortlisted compounds were observed to dock at the traditional front door area 
instead of the back door. The top 11 compounds together with their predicted binding affinity were listed in Table 2.  
 

 
Figure 4. Binding affinities distribution of all NCIDS3 compounds towards PAD4 crystal structure (PDB ID: 3B1U) 
 
 

Table 2.  List of potential PAD4 inhibitors 

Number NSC number Structure Predicted Binding Affinity 
(kcal/mol) 

1 127133  

 
 

-8.8 
 
 
 

2 670283  

 

-8.6 

3 58052 

 

-8.4 

4 377852 

 
 

-8.4 

 
Table 2 (cont.).  List of potential PAD4 inhibitors 

Zalikha Ibrahim
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“Structure-based Virtual Screening of NCIDS3”,
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Number NSC number Structure Predicted Binding Affinity 
(kcal/mol) 

5 24951 

 

-8.3 

6 5856 

 

-8.2 

7 215629 

 

-8.2 

8 203837 

 

-8.1 

9 211490 

 

-8.1 

10 80313 

 

-8.0 

11 401077 

 

-8.0 

 
 
Structure-based virtual screening of NCIDS3 
The ligands were found to linger around the front door region. None of the compounds were able to approach the 
main catalytic residue C645, possibly because of ring skeleton possesses by each compound. An example of the 
docked poses was depicted in Figure 5a. There was no specific trend in the type of ligand; but it was observed that 
each of them contains carbonyl group to assist interactions. For example, Compound 6. As can be seen in Figure 5b, 
Compound 6 made four hydrogen bonds and six hydrophobic contacts at the front door region. The first two 
hydrogen bonds were formed between the indole nitrogen of W347 and guanidinium nitrogen of R374 with the 
carbonyl group of Compound 6. The third hydrogen bond was established between the carbonyl group of R639 
backbone and nitrogen atom of Compound 6. Another hydrogen bond was formed between the hydroxyl group of 

Zalikha Ibrahim

Subsection title moves up*
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S468 and nitrogen atom of Compound 6. The compound also formed non-bonding interactions with G403, S406, 
V469, L578 and H640.  
 
  

 
Figure 5.  a) Docked pose of Compound 6 (rendered in cyan stick). PAD4 was shown as grey surface. C645 was 

colored in yellow. Other parts of the protein were discarded for visualization purpose, b) Interaction 
between PAD4 and Compound 6, c) Interaction of PAD in complex with o-F-amidine as reference [8]. 

 
 
Although Compound 6 did not interact with the main catalytic residue, C645, it interacted with important residues at 
the mouth of the pocket such as R374 and W347. Such interactions were also seen in PAD4-substrate/inhibitor 
complexes, as illustrated in Figure 5c. Arginine has high tendency to facilitate hydrogen bonds, since it is possible 
for the guanidinium side chain to donate five hydrogen bonds. Previous mutagenesis study revealed that the residue 
R374 was important in PAD4 substrate recognition [26]. The role of W347 was also been studied [8,26]. Located at 
the line of the active site, the residue was observed to assist interaction via its indole nitrogen. Based on the above 
information, it is anticipated that the shortlisted compounds in theory would interfere with the binding of substrate 
to the catalytic residues. Undoubtedly, these compounds will need further optimization because of their current 
binding interaction. For improved binding, elongation of the compounds towards the active site tunnel may be 
required.  
 

Zalikha Ibrahim
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It is noticeable that the shortlisted compounds preferred to occupy the front door rather than the back door. This 
may be due to the use of bound front door protein structure. Since the back door did not contain any ligand, the 
shape of this entrance was not visibly made to occupy a ligand. To exclude the bias, it is suggested to use multiple 
protein structures to accommodate binding site dynamics in future screening.  

 
Conclusion 

SBVS has been successfully performed on PAD4 crystal structure using ligands from NCIDS3.  This work indicates 
that NCIDS3 could serve as a good dataset for searching potential PAD4 inhibitors. All shortlisted compounds have 
preference to occupy the front door with good binding affinities. The compounds are ready to be tested 
experimentally. It may not be adequate to use only single protein structure in virtual screening, as binding site 
dynamics is unattainable. Future works suggested include flexible protein-flexible ligand docking and ensemble-
based virtual screening.  
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