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Abstract 

In this study, we are interested in the effect of long time exposure of the microbial fuel cells (MFCs) to air on the electrochemical 

performance. Here, MFCs enriched using an effluent from a MFC operated for about eight months. After 30 days, the condition 

of these systems was reversed from aerobic to anaerobic and vice versa, and their effects were observed for 11 days.  The results 

show that for anaerobic MFCs, power generation was reduced when the anodes were exposed to dissolved oxygen of 7.5 ppm. 

The long exposure of anodic biofilm to air led to poor electrochemical performance. The power generation recovered fully when 

air supply stopped entering the anode compartment with a reduction of internal resistance up to 53%.  The study was able to 

show that mixed facultative microorganism able to strive through the aerobic condition for about a month at 7.5 ppm oxygen or 

less. The anaerobic condition was able to turn these microbes into exoelectrogen, producing considerable power in relative to 

their aerobic state. 
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Abstrak 

Dalam kajian ini, kami berminat untuk mengesan prestasi elektrokimia sel bahan api mikrob (MFC) terhadap  pendedahan 

jangka masa panjang kepada udara. Di sini, MFC diperkaya menggunakan efluen daripada MFC yang telah beroperasi selama 

kira – kira lapan bulan. Selepas 30 hari, keadaan sistem ini telah diterbalikkan dari aerobik untuk anaerobik dan sebaliknya, dan 

kesannya diperhatikan selama 11 hari. Keputusan menunjukkan bahawa untuk MFC anaerobik, penjanaan kuasa telah 

berkurangan apabila anod terkena oksigen terlarut 7.5 ppm. Pendedahan jangka masa panjang biofilem anod kepada udara 

membawa kepada prestasi elektrokimia yang rendah. Penjanaan kuasa pulih sepenuhnya apabila bekalan udara berhenti 

memasuki ruangan anod dengan pengurangan rintangan sehingga 53 %. Kajian ini dapat menunjukkan bahawa mikroorganisma 

fakultatif campuran dapat hidup melalui keadaan aerobik selama sebulan pada 7.5 ppm oksigen atau kurang. Keadaan anaerobik 

mampu mengubah mikrob ini kepada eksoelektrogen, seterusnya menghasilkan kuasa yang tinggi berbanding dengan apabila 

berada di dalam keadaan aerobik. 

 

Kata kunci:  sel bahan api mikrob, aerobik, pendedahan oksigen, air sisa 
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Introduction 

A microbial fuel cell (MFC) system is a bioenergy converter that utilizes bacteria to generate electricity through 

bacterial metabolic pathway [1]. These bacteria are known as exoelectrogens and could transfer electrons to anode 

electrode. Oxygen and nitrate are preferred electron acceptor over the anode reducing power generation in their 

presence in the anolyte. Tests on the impact of oxygen in air on anaerobic MFCs had been done on both single cell 

culture, such as from the genus Shewanella [2, 3], Escherichia coli (E. coli) [4]  and mixed bacterial cultures from 

anaerobic wastewater treatment streams [5, 6]. It was shown that the dissolved oxygen in anolyte reduces the 

capability of certain bacteria to transfer electrons to external anode. Kim et al. [7] in their research on biosensor, 

found that Shewanella putrefaciens completely loss its electrochemical activity within three hours of exposure to 

air, while Biffinger et al. [8] found that Shewanella oneidensis work well as exoelectrogen in the presence of 

oxygen. Wang et al. [4] discovered that E. coli had about 61- 68 % decreased in capability to reduce external 

mediator, hexacyanidoferrate (III) [Fe(CN)6]
3-

 in anaerobic MFC when oxygen is presence. In the case of mixed 

culture, Liu et al. [5] found that the diffusion of oxygen to the anolyte from the catholyte would lead to 21- 50 % 

loss of substrate to aerobic oxidation by bacteria, which translates as the loss of generated electricity through the 

MFC.  

 

A more detail work was done by Li et al. [3] on the response of Shewanella decolorationis with oxygen  within six 

days of changing the flowing of argon gas and air into the MFCs to create alternate condition of aerobic and 

anaerobic. They discovered that in contact with oxygen, S. decolorationis reduced more NAD to NADH, which in 

turns increase in charge production. However, the dissolved oxygen (DO) in the anolyte increased aerobic 

respiration and biomass production that leads to current reduction in MFCs. There are not many studies reported on 

aerobic effect towards the anodic biofilm of MFCs [9]. Though available findings pointed out the short term adverse 

effect of oxygen on generation of current by bacteria in MFCs, to our knowledge there are no reports that show long 

term oxygen exposure on anolyte in MFC.  

 

Therefore, this study aims to analyse the effect of long-duration exposure towards oxygen on the electrochemical 

performance of enriched multi-cultured bacteria in MFCs. In this work, effluent from an air-cathode MFC operated 

for about eight months was used as inocula for aerobic and anaerobic MFCs. After 30 days, the conditions of the 

system were changed by swapping between the nitrogen and air. This turned the aerobic into anaerobic and 

anaerobic into aerobic and were let to acclimatize in their new condition for 11 days. The electrochemical 

performance of the MFCs before and after the gas swapping were compared in view of maximum power density 

(Pmax), current density (Imax) at Pmax and internal resistance (Rint) accomplished within the systems.  

 

Materials and Methods 

Chemicals 

Chemicals were of analytical grade. Peptone was purchased from Merck (Darmstadt, Germany). Yeast extract was 

purchased from Scharlau (Barcelona, Spain). Ammonium chloride (NH4Cl) and sodium acetate anhydrous 

(CH3.COONa) was purchased from AnalaR®, BDH Laboratory Supplies (Poole, England). Di-sodium hydrogen 

orthophosphate anhydrous (Na2HPO4) and potassium chloride (KCl) were purchased from Fisher Scientific UK Ltd. 

(Leicestershire, UK). Sodium dihydrogen orthosphosphate (NaH2PO4.H2O) was purchased from LabServTM, 

Biolab (Aust) Ltd. (Victoria, Australia). All analytical solution was made using distilled water unless otherwise 

stated. 

 

Inoculum, buffers, reagents and media 

Effluent from an air cathode MFC inoculated with sludge collected from Bromley Wastewater treatment plant and 

operated about eight months using acetate as the electron donor was used to inoculate air-cathode MFCs used in this 

study. The basal medium was prepared by dissolving 0.31 g/L NH4Cl, 3.12 g/L NaH2PO4∙2H20, 4.58 g/L Na2HPO4, 

and 0.13 g/L KCl in phosphate buffer (50 mM, pH 7.0) [10, 11]. The acetate medium was made by dissolving 1 g/ L 

CH3 COONa, 1 g/ L peptone of casein and 2 g/ L yeast extract  in the basal medium [12]. The medium was 

autoclaved at 121 
o
C for 15 min prior to use. 
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MFC air-cathode construction 

The study utilized single chambered air-cathode MFCs as described in Weld & Singh [13]. The reactor was 

constructed using three machined polycarbonate pieces with O-rings and steel bolts. The internal volume was 19.2 

mL (Figure 1). The middle polycarbonate had its top equipped with three holes: two big holes of ø 1.8 cm and ø 1.0 

cm for batch mode feeding and reference electrode respectively and one small hole of ø 0.4 cm for gas inlet. The 

anode chamber was separated from an air cathode by using cation exchange membrane (Ultrex) from BASF Fuel 

Cell Inc. (Somerset, NJ. USA).  

 

The air-cathode and the anode were 4 cm × 4 cm of 10% Pt-carbon cloth (Fuel Cell Earth LLC, Stoneham, MA) 

covered with a layer of 4 cm × 4 cm plain carbon cloth (Fuel Cell Earth LLC, Stoneham, MA) and 4 cm × 4 cm 

plain carbon cloth respectively. The cathode was fastened to the exterior wall of the Ultrex membrane with a nickel 

strip, acted as current collector and also used to grip the anode. 

 

Operation 
Here, 2 % (v/v) of anolyte (OD600 of 2.85) from an eight month old MFC was incubated in acetate media for 24 h at 

150 rpm and 24 °C. Each six new MFCs were filled with 0.4 mL of the incubated culture and topped up with acetate 

media. Two of the MFCs were bubbled with nitrogen to create anaerobic condition, the other two were bubbled with 

air to create aerobic condition, while two more were made as control, free from flowing of gas to create natural 

anaerobic condition. Except for the controlled MFCs, the anodes of gassed MFCs were poised at potential of +200 

mV (vs. Ag/AgCl) for seven days and operated in controlled temperature of 28 °C. From the eighth day onwards, 

the anode poising was discontinued and the MFCs were connected to external resistors of 1,000 Ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  MFC used in this study 

 

 

Analytical methods and calculation 
Cell voltage (E) across the external resistor and cell current generated from the anode fixed potential poised were 

measured every twice a day using a Digitech QM 1326 multimeter or every 30 s to 30 min using a four channel 

Quadstat 164 potentiostat (eDAQ Pty Ltd, NSW, Australia) and continuous recording using an e-corder 1621 

(eDAQ Pty Ltd, NSW, Australia) data acquisition system. Current (I) and power (P) were calculated using the 

Ohm’s law (Equation 1 and 2): 

 

𝐼 =
𝐸

𝑅𝑒𝑥𝑡
   ,  𝐼𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

𝐼

𝐴𝑛𝑜𝑑𝑒 𝑎𝑟𝑒𝑎
                                                                                                                   (1) 

                𝑃 = 𝐼 𝑥 𝐸   , 𝑃𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑃

𝐴𝑛𝑜𝑑𝑒 𝑎𝑟𝑒𝑎
                                                                                                                (2) 

 

where E represents circuit’s potential and Rext represents circuit external resistance, with the current density, Idensity 

and power density, Pdensity normalized by the projected area of the anode [14].  

 

Dissolved oxygen concentration in the anolyte was determined before the gas swapping activity from the aerobic 

MFCs as 7.5 ppm, using HQ40d portable multi-parameter meter (pH/ conductivity/ dissolved oxygen/ ORP/ ISE) 
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(Hach Company, Colorado, US). The polarization curve and the power density curves were produced by using 

method in Luo et al.  [14] and Watson and Logan, [15] to obtain the open circuit voltage (OCV), Pmax, Imax and Rint 

of the system. In this study, the polarization curves were obtained using multiple resistors (820 kΩ to 18 kΩ), with 

each resistance changed in decreasing order after every pseudo steady-state achieved or not more than 20 min 

intervals (which ever comes first) over a complete fed batch cycle. Analysis was conducted once the voltage output 

was stabilised after replenishing the media. The analysis was done for two consecutive cycles to ensure that the 

voltage response was unchanged with successive cycles. 

 

Results and Discussion 

Current density shows that once the anode poising was discontinued, only anaerobic MFCs show high current 

density with total daily average from day-8 till day-25 of 38.26 ± 0.13 mA/ m
2
 and lowest by aerobic MFCs of 2.08 

± 0.01 mA/ m
2
  while the control gave an average of 20.65 ± 0.28 mA/ m

2
 (Figure 2). As soon as the MFC 

characterisation started (day 23, 24 and 25), the aerobic MFCs began to show significant in current density (t-test, 

p<0.05), which is higher than anaerobic MFCs with total daily average from day-26 till day-30 of 70.93 ± 0.19 and 

67.49 ± 0.32  mA/ m
2
 respectively. For the control system, there was not much increase in current density recorded 

after day-26, 30.69 ± 0.68 mA/ m
2
. 

 

 

 
 

Figure 2.   Biocatalytic current generation compared between aerobic and anaerobic environment.The air-cathode 

MFCs: anode chamber bubbled with nitrogen (   ), anode chamber bubbled with air (x) and control (   ). 

The frequency of batch feeding mode was in daily average (represented by    )(n=2). 

 

 

The poising of the anode was to allow consistent control of the biofilm electrode potential, by making the electrode 

as the sole electron acceptor [16]. The reason of nitrogen bubbling into the anode compartment was to accelerate the 

anaerobic condition in the system simultaneously increase the MFC electrochemical performance. The control 

MFCs were solely depending on the bacteria in the anode chamber to create anaerobic environment by gradually 

consuming the soluble oxygen in the anolyte [17]. The current density generated by the control MFCs was almost 2-

fold less than that generated by nitrogen bubbled MFCs. The high mass of bacteria inoculated in the anode 

compartment of the control MFCs, capable to consume oxygen available in the chamber for a short time. When the 

condition became suitable for anaerobic bacteria to survive and perform anodophilic transfer, then only current 

density started to gain pace. A similar situation was observed by Hutchinson et al. [18], who stated the importance 

of having the anode compartment free of diffused oxygen from the cathode esspecially during startup. In this study, 

feeding was done manually through a designated cavity at the top of the MFC reactor. This action might allow air to 

seep into the control MFCs, while for the anaerobic MFCs, the pressure created by the nitrogen bubbled MFC kept 

the air out during feeding. Therefore, the nitrogen bubbled MFCs could generate high current without the 

interference of air. In contrast, air bubbled MFCs remained at much lower current density than the control MFCs 

during the gassing period.  

 

The characterisation of the MFCs for power and polarization curves, appeared to increase the current intensity of the 

aerobic and the anaerobic MFCs. From the Ohm’s law in equation 1, new voltage at the electrodes can be obtained 

through changing the Rext. During the characterisation analysis, the Rext applied had values larger than the fixed Rext 

used for the MFCs’ operation. The large Rext values were necessary to obtain the standard MFC characterisation and 
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polarization curves. This might attributed to the moment surged in current intensity once the MFC characterisation 

was stopped and the system were again connected to the fixed Rext, which had much lower value. Similar incident 

was experienced by Aelterman et al. [19], in their studies on the effect of Rext ranges towards MFCs current 

generation. They found that the current intensity of their MFCs increased by 3.29-fold when they changed the Rext 

from 50 to 10.5 Ω. However, further study is necessary to identify reason on how the aerobic increased in current 

density by one fold more than the anaerobic after characterisation analysis was done. 

 

The switching of gasses between air and nitrogen began on day-33 until day 44. The total daily average current 

calculated for the 11 days after gas swapping did not show any significant in current density (t-test, p >0.05) 

between before (day-26 to 30) and after gas swapping for each MFC conditions (day-33 to 44): 49.89 ± 0.19 mA/ 

m
2
(nitrogen gassed MFCs) and 74.81 ± 0.18 mA/ m

2
 (aerated MFCs) ( Figure 3).  

 

 

 
 

Figure 3.   Effect of gas swapping (    ) between the aerobic and anaerobic MFCs. The frequency of batch feeding 

mode was in average every two days (represented by    )(n=2) 

 

 

However, when looking at the individual daily average in current density (Table 1), there seems to be clear 

decreasing trend for the anaerobic MFCs from the beginning of the swapping till day-43. For aerobic MFCs, the 

effect of nitrogen bubble seems evidenced within the first four days after gas swapping and the anaerobic effect 

slowly became reduced and stabilized at about 50 mA/ m
2
. Further study would need to be carried out to understand 

this phenomenon. 

 

The impact of the gas swapping before and after can be observed through the polarization and the power curves.  

Comparisons done on the OCV from the polarization curves between the aerobic and anaerobic MFCs before and 

after the gas swapping (Figure 4a), which was about 20 days apart and the control, shows that the aerobic MFCs 

possessed 2.3 fold higher OCV than before the gas swapping (150 mV, vs. Ag/ AgCl), and 1.2 fold higher OCV 

than both the anaerobic (before and after gas swapping) and the control MFCs (300 mV, vs. Ag/ AgCl)(Figure 4a). 

The OCV zone is known as the activation loss zone and refers to the electron transfers reaction at the electrode 

surface. The OCV is the highest voltage produced in an MFC, measured in the absence of current and take into 

consideration various potential losses as follows (Equation 3 and 4)[20, 21].  

 

 𝑂𝐶𝑉 = 𝐸𝑐𝑒𝑙𝑙 + 𝐼𝑅𝑖𝑛𝑡                                                                                                                                       (3) 

 

                𝐸𝑐𝑒𝑙𝑙  =  𝐸𝑒𝑚𝑓 − (∑ 𝜂𝑎  + |∑ 𝜂𝑐|  + 𝐼𝑅Ω )                                                                                                     (4) 

 

where the 𝐸𝑐𝑒𝑙𝑙   is the measured cell voltage, 𝐼𝑅𝑖𝑛𝑡   is the sum of all internal losses of the MFC,  

∑ 𝜂𝑎  and |∑ 𝜂𝑐| represents the overpotentials of the anode and cathode respectively. The overpotential of the anode 

and cathode reflect the influence of slow kinetics of heterogenous electron transfer, which is the movement of 

electrons between a chemical species and a solid-state electrode, together with ohmic resistance and concentration 
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gradients [22]. 𝐸𝑒𝑚𝑓  is the cell electromotive force from the differece of cathode potential, Ecat to anode potential, 

Ean , and 𝐼𝑅Ω represents the sum of all ohmic losses.  

 

 

Table 1.  Daily average current calculated after gas swapping (± standard error of mean) (n=2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 4.   Polarization (a) and power density (b) curves recorded. Symbols in the figure represent anaerobic MFCs 

before () and after ( ) gas switching and aerobic MFCs before () and after ( ) gas switching as well 

as controls (x)(n=2). 

Day 
Anaerobic MFCs bubbled 

with air (mA/ m
2
) 

Aerobic MFCs bubbled 

with nitrogen (mA/ m
2
) 

26 – 30 (before gas swap) 70.93 ± 0.19 67.49 ± 0.32 

Gas swapping dates:  

33 – 34 53.40 ± 0.58 71.92 ± 0.16 

35 – 36 33.89 ± 0.17 85.28 ± 0.39 

36 (feed) – 37 82.84 ± 0.69 124.66 ± 0.59 

37 – 38 30.68 ± 0.17 69.21 ± 0.17 

38 (feed) – 39 74.19 ± 0.75 87.11 ± 0.53 

39 – 40 30.70 ± 0.08 50.43 ± 0.04 

40 (feed) – 41 69.36 ± 0.54 72.69 ± 0.44 

41 (feed) – 42 31.66 ± 0.16 47.88 ± 0.07 

42 (feed) – 43 33.08 ± 0.29 52.23 ± 0.25 

43 (feed) – 44 28.49 ± 0.23 49.15 ± 0.17 

(a) 

(b) 
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Hence, apart from the low concentraiton of oxygen in air (ca. 21%), the reduced in OCV could be attributed to 

factors, such as potential generated by the exoelectrogen that formed the anodic biofilm, diffused oxygen into the 

anode compartment that interrupts the anodic  biofilm and inefficient oxygen reduction reaction (ORR) occurs at the 

cathode site [23]. Ideally, an OCV of an air-cathode MFC should be around +621 mV (vs. Ag/AgCl) (+820 mV, vs. 

SHE) when pure oxygen is used. The 820 mV is based on the potential of redox couple between pure oxygen and 

water (½ O2/ H2O, 2e
-
) [24]. However when air is used at the cathode side, OCV obtained are much lower than the 

ideal. In an MFC study done by Li et al. [25] using anaerobic wastewater as inoculum in a 75.6 mL dual chambered 

MFC with air bubbled in deionized catholyte, OCV was within the range of +419 to +489 mV (vs. Ag/ AgCl). In 

other study done by Khan et al. [26] using anaerobic digester from palm oil waste as inoculum in 20 mL single 

chamber air-cathode, found that the OCV also dependent on the catalyst applied onto the cathode, which could 

ranged from +385 to +626 mV (vs. Ag/ ACl). In this study, however, the high OCV recorded for the aerobic MFCs 

after the anolyte was continously bubbled with nitrogen for 11 days, might have increased the population of the 

exoelectrogens in the anode compartment, thus reduce the overpotential of the anode and the internal losses in the 

MFC. 

 

From the MFC characterisations (Table 2), positive changed were seen on the aerobic MFCs where the Pmax 

increased by more than 1,000- fold, increased in Imax by 42-fold, once the air in the anolyte was replaced with 

nitrogen. The change in the anaerobic MFCs after the nitrogen bubble replaced with air was small, about 1.4- fold of 

decreased in Pmax along with a slight decreased in Imax by 2.8-fold. This increase in both Imax and Pmax for the aerobic 

MFCs after the gas swapping shows that when MFCs were in the aerobic state, the exoelectrogens were already 

there, and these became active once the environment turned to anaerobic. Exoelectrogens are believed to be 

facultative bacteria that could survive in both conditions, aerobic and anaerobic [27].  In the air bubbling anode 

chamber, the small number of exoelectrogenic bacteria near the anode still survive because concentration of oxygen 

lessen with the increasing depth of biofilm; while the centre is already anaerobic [28]. Diffused oxygen is consumed 

in the outer layers of biofilm, providing favourable conditions for growth of facultative and strict anaerobes in the 

deep layers of the biofilm [29]. Similar to oxygen, substrate diffusion also decrease with the increase of biofilm 

mass depth from bulk fluid to the interior biofilm [30].  

 

 

Table 2.  Details obtained from MFC electrochemical characterizations 

 

 

 

 

 

 

 

 

 

 

 

 

Although both the Pmax and the Imax showed expected results with the swapping of gasses, the Rint for aerobic MFCs 

showed an increment of 2.1-fold after the gas swapping. Comparison between the Rint of aerobic and anaerobic 

MFCs after the gas swapping however shows that the nitrogen replacing the air in aerobic MFCs, reduced its Rint 

lower than that of anaerobic MFCs. This effect can be seen clearly in the power curves where the curve of aerobic 

MFCs after the swapping was not symmetrical as the power curve of the anaerobic MFCs (Figure 4b). Based on 

Logan et al. [20], the symmetric nature of the power density curve obtained from the MFC characterisation analysis, 

which was also seen in this study represents a high Rint in an MFC mostly due to the ohmic resistance (RΩ) at the 

point of Pmax. RΩ is derived from any material that creates resistance in the system, such as substrates, bacteria, gap 

between electrodes, loose contacts between components, and low ionic conductivity in the substrate. The continuous 

air bubbling in the anode chamber probably helped with the growth of aerobic microbes due to a direct reduction of 

MFC 
Pmax                    

(mW/ m
2
) 

Imax                                    

(mA/ m
2
) 

Rint                               

(k) 

Anaerobic- before gas swap 10.88 ± 8.33 114.61 ± 49.97 30.55 ± 0.00 

Anaerobic- after gas swap (aerobic condition) 7.87 ± 2.13 41.29 ± 5.35 226.40 ± 2.45 

Aerobic- before gas swap 0.02 ± 0.02 2.50 ± 2.25 50.92 ± 0.00 

Aerobic- after gas swap (anaerobic condition) 24.07 ± 4.06 106.22 ± 11.20 107.79 ± 3.89 

Control 2.91 ± 2.52 31.09 ± 17.94 2.41 ± 0.00 
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oxygen in the cell to increase biomass production. Although increase in biomass means increase in the NADH 

production, which leads to increase in electrons production, most of these electrons however will be consumed for 

biomass before able to  generate electricity [3]. This could be the reason for the high Rint observed from aerobic 

MFCs before the gas swapping with very poor Imax and Pmax [24]. 

 

Although this study was able to culture exoelectrogen from aerobic sludge originated from trickling filter, the 

electrochemical performance was way too low from results that have been reported in other publications, which is 

no less than 100 mW/m
2
. According to Rahimnejad et al. and Haslett et al [31, 32], the performance of MFCs are 

commmonly associated with the following: 1) Substrates oxidation in the anode compartment, 2) Microorganism 

used for inoculum, 3) Mediator, 4) Permeabililty of cation exchange membrane (if any), 5) Electrode material and 

their surface area, 6) Electron acceptor at the cathode chamber, 7) Electron trasport pathway to anode surface, 8) 

Overpotential at the electrodes, 9) External load applied, 10) Distance between electrodes, 11) Mass transport, and 

12) Operational temperature [31, 32]. For instance Feng et al. [33] analysed the effect of acid modified carbon fiber 

brush in 28 mL air-cathode MFC having 20% inoculum from domestic wastewater with external load of 1 kΩ, 

achieved Pmax of  1,370 mW/ m
2
. Watson and Logan [15] adapted similar MFC design with an increased of 

inoculum concentration upto 50%, different type of microorganism and used a non modified carbon fiber brush, had 

achieved 1.6 fold lower Pmax than the later. Santoro et al. [34] on the other hand with completely different MFC 

design, used 4.6 fold more volume and non modified carbon cloth for anode and cathode, only achieved 268 

mW/m
2
 of Pmax. To identify the reason of poor electrochemical performance in this study and to reduce such high 

Rint, the variables affecting the performance of MFCs listed above need to be analyzed and compare them with those 

having similar MFC designs. 

 

Conclusion 

The goal of this study was to analyse the effect of long-duration exposure towards oxygen in air through gas 

swapping on the electrochemical performance of enriched multi-cultured bacteria in air-cathode MFCs. The results 

showed that prolong exposure in 7.5 mg/L (ppm) of dissolved oxygen MFCs for a month on the enriched multi-

cultured bacteria culture, makes the bacteria electrochemically inactive and produced low power and current 

generation. This however is not permanent since it could easily and quickly be rectified with improvements up to 

100 % in Pmax and Imax and a reduction in Rint of up to 53 %, when introduced into an anaerobic environment. Future 

studies could be carried out to gain a more in-depth understanding on electrochemical performance of MFCs before 

and after gas swapping, and also understanding of its effect on microbial community in the biofilm and half-wave 

redox potential (E1/2). Further research can also be carried out on electrode polarization and the effect of different 

oxygen concentration ranges on MFC performance.   
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