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Abstract
This study shows the effectiveness of hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal
component analysis (PCA), and multiple linear regressions (MLR) for assessment of air quality data and recognition of air
pollution sources. 12 months data (January-December 2007) consisting of 14 stations in Peninsular Malaysia with 14 parameters
were applied. Three significant clusters - low pollution source (LPS), moderate pollution source (MPS), and slightly high
pollution source (SHPS) were generated via HACA. Forward stepwise of DA managed to discriminate eight variables, whereas
backward stepwise of DA managed to discriminate nine variables out of fourteen variables. The PCA and FA results show the
main contributor of air pollution in Peninsular Malaysia is the combustion of fossil fuel from industrial activities, transportation
and agriculture systems. Four MLR models show that PMy, account as the most and the highest pollution contributor to
Malaysian air quality. From the study, it can be stipulated that the application of chemometrics techniques can disclose
meaningful information on the spatial variability of a large and complex air quality data. A clearer review about the air quality
and a novelty design of air quality monitoring network for better management of air pollution can be achieved via these methods.

Keywords: air quality, chemometrics, pattern recognition, Peninsular Malaysia

Abstrak
Kajian ini menunjukkan keberkesanan kaedah hirarki algorithma analisa kelompok (HAAK), analisis pembezalayan (AP),
analisis komponen utama (AKU), dan kepelbagaian regresi linear (KRL) untuk penilaian data kualiti udara dan pengenalpastian
punca pencemaran udara. Data 12 bulan (Januari-Disember 2007) terdiri daripada 14 stesen di Semenanjung Malaysia dengan 14
parameter telah digunakan. Tiga kelompok besar - sumber pencemaran rendah (SPR), sumber pencemaran sederhana (SPS), dan
sumber pencemaran sedikit tinggi (SPST) diwujudkan melalui HAAK. Melalui AP, kaedah langkah demi langkah ke hadapan
berjaya membezalayan lapan pembolehubah, manakala kaedah langkah demi langkah kebelakang berjaya membezalayan
sembilan pembolehubah daripada 14 belas pembolehubah. Keputusan AKU menunjukkan bahawa penyumbang utama
pencemaran udara di Semenanjung Malaysia adalah disebabkan oleh pembakaran bahan api fosil melalui aktiviti perindustrian,
pengangkutan dan sistem pertanian. Empat model KRL menunjukkan bahawa PMy, bertindak sebagai penyumbang utama
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kepada pencemaran udara Malaysia. Dari kajian ini, ia dapat membuktikan bahawa penggunaan teknik kemometrik boleh
memberikan maklumat yang bermakna terhadap kebolehubahan ruang bagi data yang besar dan kompleks. Kajian yang lebih
jelas mengenai kualiti udara dan rangkaian pemantauan reka bentuk kualiti udara yang baru dalam pengurusan pencemaran udara
yang lebih baik dapat dicapai melalui kaedah-kaedah tersebut.

Kata Kunci: kualiti udara, kemometrik, pengenalan corak, Semenanjung Malaysia

Introduction
Air pollution control is needed to prevent the situation from deteriorating in the long term period [1,2]. Therefore, air
quality monitoring network is a part of the preliminary strategy for the air pollution deterrence plan in Malaysia. A
properly-designed of air monitoring network is a main component of any air quality control program. The operation
and maintenance of air quality monitoring stations and tools for measuring the parameters of air quality are costly,
so it is more favourable to use as few stations and parameters as possible to achieve the objectives of monitoring.
Consequently, the application of chemometrics can be utilized to complement the monitoring strategy [3].

Chemometrics in the environmental field is verified to be a functional tool to identify the sources of pollution such
as in [2,4,5]. Chemometrics techniques include the interrelationship of faunal structure, physical-chemical
characterization, and toxicity data that received from in-situ measurement and laboratory analysis. The analysis is
considered to be the most suitable tool for the reduction and interpretation of meaningful data [5,6,7]. Unbiased
methods such as hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal
component analysis (PCA), and multiple linear regressions (MLR) were applied in air quality analysis.

The application of diverse chemometrics statistical techniques for interpretation of the complex databases, permits a
better understanding of air quality in the study region. Chemometrics methods also offer the recognition of the
potential sources that are accountable for variations in air quality and manipulate the air quality. Therefore, the
methods have been proven as priceless tools for developing suitable plans for efficient management of the air
monitoring network [2,8]. The objectives of this study are to recognize the pollution sources and identify the most
significant pollutant.

Materials and Methods
Study Sites
14 stations (Figure 1 and Table 1) around Peninsular Malaysia were selected as a monitoring site in this study.
There are no main natural disasters occurred in Peninsular Malaysia such as typhoon, volcanic eruption and
earthquake. These stations were chosen due to the type of region which are urban, suburban, and industrial area.

Data Collection

The data for 14 air quality parameters from 14 stations were gathered from the Department of Environment (DOE),
from January to December 2007. Ambient temperature (°C), methane (CH,4, ppm), carbon monoxide (CO, ppm),
relative humidity (%), non-methane hydrocarbons (NmHC, ppm), nitrogen monoxide (NO, ppm), nitrogen dioxide
(NO,, ppm), nitrogen oxides (NO,, ppm), ozone (Os;, ppm), particulate matter (PMyq, pg/cu.m), sulphur dioxide
(SO,, ppm), total hydrocarbons (THC, ppm), ultra-violet B (J/m2hr) and wind speed (km/hr) were selected to study
the influence of API values and the sources of pollution. The hourly data were used to form a monthly average,
which comprises 168 datasets (12 data per stations x 14 stations) with a total of 2,352 observations (12 data per
stations x 14 variables x 14 stations).

1416



INDONESIA

THAILAND

MALAYSIA

W e

4 wicxreters. |

Table 1. The details of 14 monitoring stations around Peninsular Malaysia
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Figure 1. Fourteen selected air quality monitoring stations in the Peninsular Malaysia

Station No. Site State Location Latitude Longitude
Station 1 Johor SM Pasir Gudang 2, Pasir Gudang NO01°28.225 [E103° 53.637
Station 2 Terengganu SRK Bukit Kuang, Teluk Kalung, NO04° 16.260 E103° 25.826
Kemaman
Station 3 Pulau Pinang Sek. Keb. Cenderawasih, Tmn. NO05° 23.470 E100° 23.213
Inderawasih, Perai
Station 4 Selangor Jab. Bekalan Air Daerah Gombak NO03°15.702 E101° 39.103
Station 5 Melaka Sek. Men. Keb. Bukit Rambai, N02° 15.510 E102° 10.364
Melaka
Station 6 Perak SM Jalan Tasek, Ipoh NO04° 37.781 E101° 06.964
Station 7 Negeri Sembilan Taman Semarak (Phase I1), Nilai NO02° 49.246 E101° 48.877
Station 8 Pahang SK Indera Mahkota, Kuantan NO03°49.138 E103° 17.817
Station 9 Kedah SK Bakar Arang, Sungai Petani NO05° 37.886 E100° 28.189
Station 10 Johor SM Vok. Perdagangan, Johor Baru NO1°29.815 E103°43.617
Station 11 Kelantan Maktab Sultan Ismail, Kota Bharu NO06° 09.520 E102° 15.059
Station 12 Selangor Country Heights, Kajang N02°59.645 E101° 44.417
Station 13 Pulau Pinang USM, Minden N05°21.528 E100° 17.864
Station 14 Kuala Lumpur S. M. Keb. Seri Permaisuri, Cheras, N 03° 06.376 E 101°43.072

Kuala Lumpur
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Hierarchical Agglomerative Cluster Analysis (HACA)

In this study, HACA was used for clustering the spatial air monitoring station based on the Air Pollutant Index
(API) data. HACA is a statistical method that can classify the object in a data set [9], and known as the art of
finding groups in data processing [10]. In this method, the samples to be clustered are defined in n-dimensional
hyperspace and distances are computed accordingly. After a criterion of distance is defined in several algorithms,
then it can be used to detect groups of the samples. Samples that are close to each other are expected to be similar
in one group [11].

In this study, HACA is employed on the normal distribution dataset through the Ward’s method by means of
Euclidean distances, as a measure of the relationship [12,13]. The outcome of this method depicted by a treelike
structure known as a dendrogram. The dendrogram demonstrated a visual summary of the clustering process,
presenting a picture of the groups, and their proximity, with a reduction in dimensionality of the original data [14].
The linkage distance by a Euclidean distance accounted as Djn/Dmax, Which signifies the measure between the
linkages distances divided by the maximal distance. The measure will be multiplied by 100 as a way to standardize
the linkage distance signified by the y-axis [14]. Euclidean distance can be defined by equation 1:

d(X,y) =27 (Xn—ym) @)

where, d(x,y) is the Euclidean distance between two items represented by X, and y,; p is the dimensional space of
the variables.

Discriminant Analysis (DA)

DA is used to classify the object of unknown origin to one of several naturally occurring groups [15]. In this study,
DA has been coupled with HACA to establish the significant different variables as well as for reducing the errors in
groups such as in [6]. In each cluster, it creates a discriminant functions (DFs) [16], which can be determined by
equation 2:

f(Gi) = ki+ X7}, Wi ()

where, i is the number of groups (G), k; is the constant inherent to each group, n is the number of parameters used to
classify a set of data into a given group, and w; is the weight coefficient assigned by DF analysis (DFA) to a given
parameter (Pj).

In this study, the air quality parameters were treated as independent variables, whereas the three significant groups
were treated as dependent variables. Three modes of DA were applied, which are standard mode, forward stepwise
mode and backward stepwise mode. DFs was created by a standard mode in order to evaluate the spatial variations
in the air quality raw data. In the forward stepwise mode, variables were gradually eliminated starting with the most
significant variable until no significant changes were found. In the backward stepwise mode, variables were
eliminated gradually, starting with the least significant variable until no significant changes were found.

Principal Component Analysis (PCA)

In this study, the interrelated variables were analysed and interpreted by PCA. Theoretically, PCA is a method of
creating new variables (known as principal components, PCs), which are linear composites of the original variables.
The values of PCs created by PCA is known as principal component scores (PCS). The maximum number of new
variables is equivalent to the number of original variables [12]. PCA can be utilized to identify the emission source
[17]. In this study, the HACA was coupled with PCA in order to create the most powerful model recognition of
emission sources. It presents the details on the most significant variables due to spatial and temporal variations, by
putting them from the less significant variables with minimum loss of the original information [2, 8,18]. The PCs
can be calculated as equation 3:

Zij = a'ilXij + a'i2X2j ot a'imej (3)
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where, z is the component score, a is the component loading, x is the measured value of the variable, i is the
component number, j is the sample number, and m is the total number of variables.

Sometimes, the PCs produced by PCA are not interpreted well. Consequently, the varimax rotation has been applied
to rotate the PCs for the interpretation purposes. Eigenvalues obtained from varimax rotation are the precursor of
PCA. Eigenvalues more than 1.0 were considered as significant and subsequently varimax factors (VFs), which are
the new groups of variables are generated [19]. The VVFs values which are greater than 0.75 (> 0.75) is considered as
“strong”, the values range from 0.50-0.75 (0.50 > factor loading > 0.75) is considered as “moderate”, and the values
range from 0.30-0.49 (0.30 > factor loading > 0.49) is considered as “weak” factor loadings [2,20,21]. In this study,
only factor loadings with absolute values greater than 0.75 were selected for the interpretation [12,21]. Emission
source recognition of different air pollutants was completed based on different activities in the three significant
clustered regions. The fundamental model of FA is stated as equation 4:

I =ayfita, b+ rag f+e 4)

where, z is the measured value of a variables, a is the factor loading, f is the factor score, e is the residual term
accounting for errors or other sources of variation, i is the sample number, j is the variable number, and m is the
total number of factors. In this study, PCA were applied to the classified datasets (14 variables) independently,
based on the LPS, MPS and SHPS region that were classed by HACA.

Multiple Linear Regressions (MLR)

MLR is widely used for investigating the relationship among various independent and dependent variables by fitting
a linear equation to observed data [22,23,24] and gives the percentage of the contribution of each parameter to the
atmospheric pollution [25]. In this study, MLR was used to justify the relationship between the air quality
parameters and the API data. The model of the original air quality parameters-APl was compared to the most
significant parameters-API, in order to get a better model within clusters. The model generalizes of the simple
linear regression, in which each value of the independent variable is associated with a value of the dependent
variable. The model was calculated using the equation 5:

Yi:ﬂo+ﬂ1X1+ﬁ2X1i2...+ﬂp—l (5)

where, Y is the response variable, and there are p — 1 explanatory variable X1, Xp, ..., Xp1, With p parameters
(regression coefficients) So, f1, B, ..., Bp-1 and ¢ is an error associated with the regression.

The coefficient of determination (R?) and root mean square error (RMSE) are the components that need to be
considered in model performance. The value of R? provides information about how well the model performs on
external data [26]. RMSE is used to measure the residual error and it will be taken into account for estimation of
the mean difference between observed and modelled value of the API. The smallest RMSE and the closest R® value
to 1, the better model shall be performed [5,21,26,27].

Results and Discussion

Spatial Classification of Air Quality by HACA

This part measures the historical values of API step by step to categorize the air quality station based on their
homogeneity level by means of HACA. Figure 2 and Figure 3 shows the three significant regions illustrated by
HACA and the potential pollution sources within the study regions. Three clusters that generated from the clustering
method are known as: the low pollution source (LPS), moderate pollution source (MPS), and slightly high pollution
source (SHPS) region. Cluster 1 (station 1, station 2, station 4, station 8, station 11 and station 13) corresponds to
the LPS region. Cluster 2 (station 5) corresponds on the MPS region. Cluster 3 (station 3, station 6, station 7, station
9, station 10, station 12 and station 14) corresponds on the SHPS region.
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This result suggests that, for a shorter period of air quality assessment, the number of monitoring station can be
reduced to only one station per each cluster of region. Three monitoring stations which are representing three
significantly clustered regions are adequate to construct the whole monitoring network.
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Figure 2. Dendrogram showing different clusters of sampling stations located across Peninsular Malaysia based on
API
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Figure 3. Classification of regions due to air quality by HACA in Peninsular Malaysia
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Discrimination of Spatial Variation

The air quality data post clustering of the monitoring stations into three significant clusters obtained by HACA was
then undergoing with DA. The finding from this analysis shows that the accuracy of spatial variation by means of
standard mode, forward stepwise mode, and backward stepwise mode were 95.83% (14-variables), 94.05% (8-
variables), and 94.05% (9-variables), respectively such in Table 2. The discriminant variables resulting from the
forward stepwise mode are NO,, SO,, PMyg, CH,, humidity, NmHC, ultra-violet B, and wind speed, while in the
backward stepwise included NO, as the additional variable for having a high spatial variation. Figure 4 shows the
box and whisker plots of three significant regions. Nine selected air quality variables that showed high spatial
variations in backward stepwise mode of DA were then applied for further discussion.

Table 2. Classification matrix for spatial variations across the Peninsular Malaysia

Sampling Regions % Correct Regions assigned by the DA
SHPS MPS LPS
Standard DA mode (14-variables)
SHPS 97.22 70 0 2
MPS 91.67 1 11 0
LPS 95.24 4 0 80
Total 95.83 75 11 82
Stepwise forward DA mode (8-variables)
SHPS 91.67 66 0 6
MPS 91.67 1 11 0
LPS 96.43 3 0 81
Total 94.05 70 11 87
Stepwise backward DA mode (9-variables)
SHPS 93.06 67 0 5
MPS 91.67 1 11 0
LPS 95.24 4 0 80
Total 94.05 72 11 85

Source Identification of Air Pollutants

PCA was applied for identifying the source of air pollutants in this study. Four VFs were obtained in LPS and MPS
region, and five PCs in the SHPS region based on the eigenvalues more than 1.0. The total variance for LPS, MPS,
and SHPS region were correspond to 77.20%, 88.71%, and 79.95%, respectively. The finding of VFs, loadings of
variables, and variance are illustrated in Table 3.

Low Pollution Source (LPS) Region

In the LPS region, VF1 contributes 41.73% of the total variance and has strong positive loadings on CO, NO,, non-
methane hydrocarbons, NO and NO,. In VF1, the presence of CO, NO,, NO and NO, are related to the fossil fuel
combustion from agricultural systems [28], while the presence of non-methane hydrocarbons is related to the fossil
fuel combustion from transportation [29]. Additional carbon can be sequestered as the effect of nitrogen deposition
caused by agricultural practices [30]. This assumption is realistic, as the air quality in this region is good and most
activities are restricted to agriculture and transportation. VF2 contributes 16.14% of the total variance, which has
strong positive loadings on methane and wind speed. Strong negative loading is also shown by Oz VF2 is
associated with biogenic emissions. The emission of CH, is commonly occurring at the peat swamp area. Most of
the LPS regions are located nearby the coastal area. The CH,4 and O3 are closely correlated and near-simultaneous,
though opposite in sign. The processes that had led to the accumulation of CH, appeared to have led to the depletion
of O3, to be precise, accumulation and depletion under a shallow night-time inversion [31]. VF3 and VVF4 contribute
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11.07% and 8.25% of the total variance, respectively; have a strong positive loading on ultra-violet B and ambient
temperature and strong negative loading on humidity, which are considered as meteorological factors. When ultra-
violet B intensity is increased, automatically the ambient temperature is increased. However, the humidity will
decrease due to the evaporation process. Despite of emission sources, ambient air quality can be strongly influenced
by meteorological factors through the complex relations between diverse processes - emissions, transport, chemical
transformation and wet and dry deposition [32].
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Source ldentification of Air Pollutants

PCA was applied for identifying the source of air pollutants in this study. Four VFs were obtained in LPS and MPS
region, and five PCs in the SHPS region based on the eigenvalues more than 1.0. The total variance for LPS, MPS,
and SHPS region were correspond to 77.20%, 88.71%, and 79.95%, respectively. The finding of VFs, loadings of
variables, and variance are illustrated in Table 3.

Low Pollution Source (LPS) Region

In the LPS region, VF1 contributes 41.73% of the total variance and has strong positive loadings on CO, NO,, non-
methane hydrocarbons, NO and NO,. In VF1, the presence of CO, NO,, NO and NO are related to the fossil fuel
combustion from agricultural systems [28], while the presence of non-methane hydrocarbons is related to the fossil
fuel combustion from transportation [29]. Additional carbon can be sequestered as the effect of nitrogen deposition
caused by agricultural practices [30]. This assumption is realistic, as the air quality in this region is good and most
activities are restricted to agriculture and transportation. VF2 contributes 16.14% of the total variance, which has
strong positive loadings on methane and wind speed. Strong negative loading is also shown by Os;. VF2 is
associated with biogenic emissions. The emission of CH,4 is commonly occurring at the peat swamp area. Most of
the LPS regions are located nearby the coastal area. The CH,4 and O3 are closely correlated and near-simultaneous,
though opposite in sign. The processes that had led to the accumulation of CH, appeared to have led to the depletion
of O3, to be precise, accumulation and depletion under a shallow night-time inversion [31]. VF3 and VVF4 contribute
11.07% and 8.25% of the total variance, respectively; have a strong positive loading on ultra-violet B and ambient
temperature and strong negative loading on humidity, which are considered as meteorological factors. When ultra-
violet B intensity is increased, automatically the ambient temperature is increased. However, the humidity will
decrease due to the evaporation process. Despite of emission sources, ambient air quality can be strongly influenced
by meteorological factors through the complex relations between diverse processes - emissions, transport, chemical
transformation and wet and dry deposition [32].

Moderate Pollution Source (MPS) Region

In the MPS region, VF1 contributes 50.03% of the total variance and has strong positive loadings on CO, NO,, SO,,
CHjy, NO and NOy; and strong negative loading on PMy,. VF1 could be related to the composition of chemicals for a
range of anthropogenic activities that comprise point source pollution particularly from industrial, residential, and
vegetation areas in MPS region. Most of the pollutants in the MPS region are originated from burning of biomass
and fossil fuels, particularly from industrial, residential and vegetation areas, motor vehicles, and natural emission
sources [5,24,33]. VF2 contributes 18.01% of the total variance and proves strong positive loadings on non-methane
hydrocarbons and total hydrocarbons, which are pointed to mobile source of pollution [29]. Access route for land
transportation has been developed rapidly in the MPS region recently which makes the number of transportation on
the road increased drastically. VF3 contributes 12.04% of the total variance and proves strong positive loadings on
ultra-violet B and wind speed. VF3 is commonly related to meteorological factor. The life cycle of pollutants is
influenced by chemical and meteorological factors, such as wind speed, temperature, precipitation, and solar
radiation [24,34]. VF4 contributes 8.64% of the total variance, and has a strong positive loading on Os, which is
related to small-scale fossil fuel combustion.

Slightly High Pollution Source (SHPS) Region

In the SHPS region, VF1, VF2, VF4 and VF5 contribute 28.26%, 20.21%, 10.29% and 9.40% of the total variance,
respectively. They have strong positive loadings on CO, NO,, NO, NO,, CH,, total hydrocarbons, Oz and SO..
These factors contain chemical compositions that are involved with fossil fuel combustion in various means. The
combustion of these fuels in industries and vehicles has been a main source of air pollution [5,24,35]. VF3
contributes 11.80% of the total variance and has a strong positive loading on humidity and strong negative loading
on ambient temperature and wind speed. VF3 is associated with meteorological factor. Air pollutant chemical
reactions rely on ambient air states and are normally manipulated by short-wave radiation, air temperature, wind
speed, wind direction and relative humidity [24,36]. It is tremendously vital to consider the consequence of
meteorological states on air pollution, because they directly influence the emission effect of the atmosphere.
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Table 3. Loadings of environmental variables on the varimax-rotated PCs for water quality data collected from
LPS, MPS and SHPS of the Peninsular Malaysia

. LPS MPS SHPS

Variables
VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VFR2 VF3 VF4  VF5

CcoO 0.896 0.933 0.801
NO, 0.939 0.773 0.747
SO; 0.906 0.766
PMyo -0.748
O3 -0.749 0.827 0.888
Ambient 0.852 -0.752
Temp
CH, 0.746 0.913 0.956
Humidity -0.756 0.768
Non Methane 0.887 0.941
Hydrocarbons
NO 0.873 0.857 0.918
NOx 0.921 0.881 0.945
Total 0.880 0.911
Hydrocarbons
UV B 0.769 0.799
Wind Speed 0.749 0.961 -0.884
Eigenvalues 5.92 249 1.37 1.02 6.5 2.34 1.56 1.12 3.96 2.83 1.65 144 1.32
Variability 41.73 16.14 11.07 8.25 50.03 18.01 12.04 864 2826 2021 11.8 10.29 9.4
(%)
Cumulative 41.73 57.88 68.95 77.2 50.03 68.04 80.08 8871 2826 4847 60.27 7056 79.95

*0)

Multiple Linear Regression (MLR) of Air Pollutant Index (API) Modelling

In this study, the source apportionment of air pollutant parameters (known as independent variable) was used to
identify the potential of API (known as dependent variable) values. Four models were developed. To develop the
models, the independent variables were the air quality parameters (using original air quality parameters (14
variables), air quality parameters from LPS (9 variables), air quality parameters from MPS (9 variables), and air
quality parameters from SHPS (9 variables)).

The finding of the study shows that the values of R? and RMSE for the original air quality parameters-API were
0.873 and 3.108, respectively from the goodness of fit statistics. The values of R* and RMSE for LPS were 0.865
and 2.187, respectively. The values of R and RMSE for MPS were 0.999 and 1.430, respectively. Meanwhile, the
values of R? and RMSE for SHPS were 0.868 and 2.195, respectively. The proposed equation with R? and RMSE
can be seen in equation 6 - 9:

Original air quality parameters (14 variables)

Total API = - 0.15(CO) - 501.09(NO,) - 210.13(SO,) +0.70(PM() + 58.94(03) + 0.19(Temp) —
0.24(CH,) - 0.14(Humidity) - 7.94(NMHC) - 576.91(NO) + 597.93(NO,) + 1.26(THC)
+6.43e®(UVB) - 0.88(Wind Speed 10m) + 18.30 [R?*=0.873 and
RMSE=3.108] (6)

LPS (9 variables)
Total API = - 524.57(NO,) + 59.48(SO,) + 0.82(PMy) + 2.71(CH,) - 6.99¢ ®*(Humidity)
+6.70(NMHC) + 87.74(NO,) + 1.47e 02(UVB) - 0.36(Wind Speed 10m) + 8.72
[R?=0.865, RMSE=2.187] @)
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MPS (9 variables)
Total API = - 8216.13(NO,) + 1803.87(SO,) + 1.61(PMy) - 49.44(CH,) - 2.18(Humidity) —
13.64(NMHC) + 5478.53(NO,) - 3.95¢ %(UVB) - 1.28(Wind Speed 10m)
+229.68 [R*=0.999, RMSE=1.430] (8)

SHPS (9 variables)
Total API = 332.99(NO,) - 241.01(SO,) + 0.60(PM) + 1.50(CH,) - 0.10(Humidity)
+ 2.00(NMHC) - 54.50(NO,) + 2.13e"%*(UVB) - 0.15(Wind Speed 10m)
+16.37 [R*=0.868, RMSE=2.195] 9)

Based on the equations 6 - 9, the MPS shows the highest coefficient of determination, R? (0.999) contributed by the
nine air pollutant parameters. The daily average concentrations of NO,, CH,, Humidity, NMHC, UVB, and wind
speed 10m have a negative influence on the total API value in contrast to the average concentration of SO,, NO,,
and PMy,. The second highest is from original air quality parameters (14 air pollutant parameter) model with the R
value of 0.873. The concentrations of CO, NO,, SO,, CH,, Humidity, NMHC, NO, and wind speed 10m show a
negative influence compared to O3, PMy,, NO,, Ambient Temperature, THC, and UVB. The third highest is in
Cluster SHPS with R? value is 0.868, in which SO, Humidity, NO,, and wind speed 10m show a negative
influence on the total APl while NO,, PM, CH4 NMHC, and UVB positively influenced to the total API.
Meanwhile, Cluster LPS is the lowest of R? value (0.865) in this study. Apart from NO,, Humidity, and Wind speed
10m, it is positively influenced by the SO,, PMyy, CH4, NMHC, NO,, and UVB. From the finding, Cluster MPS has
been selected as the best model due to the smallest RMSE and the closest R? value of 1 when compared among
tested parameters. This is because the better model shall be performed if the value of RMSE is smaller than the
other and closest of R? value to 1 [5,26,27].

() Total api / standardized coafficients (b} Total api / standardized coafficants
{95% conf. interval) {95% conf. interval)
2
a a
| -]
o o
T T
& g
T B
- =)
s =
" - L)
= =
| 2]
& ]
{c)  Total ap1/ standardized coefficients {d)  Total aPI f Standardized coefficients
{95% conf. interval) {95% conf. interval]
12 ;
; g+
é E os
g ¥ 05 -
i E 04
% E 02 -
3 - 3 o
g £ oz v
-4 = = a4 1_: :
Varishle b U‘ar‘ihk b
= =

Figure 5. Bar chart of the standardized coefficient for the independent variables of (a) Originél air quality
parameters, (b) LPS, (c) MPS, and (d) SHPS
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Figure 6 represents the residual analysis of the observed and predicted of the total API using the MLR modelling for
original air quality parameters and 3 clusters. The findings have shown that the deficiency of the model for original
air quality parameters, LPS, MPS, and SHPS, which the data sets indicate a great difference in the range of -8 to 4, -
3to4,-0.6t0 0.8, and -6 to 2, respectively. The verification of the model was influenced by the outlier observation
as illustrated in Figure 7, which from the actual total API indicates that some of the observations were out from the
95% of the confidence interval range (lower and upper boundary) especially for the model of original air quality
parameters, LPS, and SHPS, but contrast to MPS model. The main objective of plotting this graph is to prove that
the MLR model is suitable to be used for total API prediction, because it gives the great difference between
predicted total API and calculated total API.
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Figure 6. Scatter plot diagram of standardized residuals of (i) actual API, and (ii) predicted API for: (a) original air
quality parameter model, (b) LPS model, (¢) MPS model, and (d) SHPS model.
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Figure 7. Scatter plot diagram of the API (predicted) versus the actual APl of (a) original air quality parameter
model, (b) LPS model, (c) MPS model, and (d) SHPS model.
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Conclusion

From this study, it can be concluded that the spatial variations of air quality data in Peninsular Malaysia were
successfully studied by applying chemometrics techniques. 14 monitoring stations were grouped into three
significant diverse cluster regions, known as LPS, MPS, and SHPS by using HACA. Based on the finding from
HACA, a better monitoring network approach can be proposed which could lessen the quantity of monitoring
stations. The grouped regions made by HACA were confirmed by DA with 94.05% accuracy of spatial variation for
both forward and backward stepwise modes. Eight discriminant variables were selected for forward stepwise mode
while nine discriminant variables were selected for backward stepwise mode. The nine variables obtained from
backward stepwise mode can be used for a new design of air quality monitoring network instead of taking 14 air
quality variables into account. To identify the source of air pollution, PCA was done. Four VFs were found for LPS
and MPS regions, with total variance of 77.20% and 88.71%, respectively. In the SHPS region, with the total
variance of 79.95%, only five VFs were obtained. In this study, the sources of variations are expected derived from
industrial emissions, transportation emissions, agricultural systems, fuel combustions of peat swamp, and
meteorological factors. For LPS and MPS regions, four variables were identified to be dependable for the major
variations. For SHPS region, five variables were identified to be dependable for the major variations. Based on
PCA, air pollution sources are expected to come from fuel combustion of peat swamp, transportation emissions,
large-scale agricultural systems and meteorological factors in the LPS region. The air pollution sources in MPS
region are related to transportation emissions, small or medium industrial emissions, small-scale agricultural
systems and meteorological factors. The major sources of variations in the SHPS region are expected derived from
large-scale industrial emissions, transportation emissions, and meteorological factors. MLR analysis was done to
identify the variability of the proposed equation to predict values of the total APl. When comparing from four
models developed, the R? values were found to be strong because they were high and significant at p-value (< 0.05).
The MPS model shows the highest R? with the value of 0.999, followed by the original air quality parameter, SHPS,
and LPS model with the value of 0.873, 0.868, and 0.865, respectively. In this study, the finding also shows that
PMyo contributes the most of API in atmosphere compared to the other pollutants and this pollutant can be
categorized as the primary pollutant in Malaysia. For a better and effective air quality management, a new air
quality monitoring network should be designed in term of practical and cost-effective.
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