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Abstract 

This study shows the effectiveness of hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal 

component analysis (PCA), and multiple linear regressions (MLR) for assessment of air quality data and recognition of air 

pollution sources. 12 months data (January-December 2007) consisting of 14 stations in Peninsular Malaysia with 14 parameters 

were applied. Three significant clusters - low pollution source (LPS), moderate pollution source (MPS), and slightly high 

pollution source (SHPS) were generated via HACA. Forward stepwise of DA managed to discriminate eight variables, whereas 

backward stepwise of DA managed to discriminate nine variables out of fourteen variables. The PCA and FA results show the 

main contributor of air pollution in Peninsular Malaysia is the combustion of fossil fuel from industrial activities, transportation 

and agriculture systems. Four MLR models show that PM10 account as the most and the highest pollution contributor to 

Malaysian air quality. From the study, it can be stipulated that the application of chemometrics techniques can disclose 

meaningful information on the spatial variability of a large and complex air quality data. A clearer review about the air quality 

and a novelty design of air quality monitoring network for better management of air pollution can be achieved via these methods. 

Keywords:  air quality, chemometrics, pattern recognition, Peninsular Malaysia 

 

Abstrak 

Kajian ini menunjukkan keberkesanan kaedah hirarki algorithma analisa kelompok (HAAK), analisis pembezalayan (AP), 

analisis komponen utama (AKU), dan kepelbagaian regresi linear (KRL) untuk penilaian data kualiti udara dan pengenalpastian 

punca pencemaran udara. Data 12 bulan (Januari-Disember 2007) terdiri daripada 14 stesen di Semenanjung Malaysia dengan 14 

parameter telah digunakan. Tiga kelompok besar - sumber pencemaran rendah (SPR), sumber pencemaran sederhana (SPS), dan 

sumber pencemaran sedikit tinggi (SPST) diwujudkan melalui HAAK. Melalui AP, kaedah langkah demi langkah ke hadapan 

berjaya membezalayan lapan pembolehubah, manakala kaedah langkah demi langkah kebelakang berjaya membezalayan 

sembilan pembolehubah daripada 14 belas pembolehubah. Keputusan AKU menunjukkan bahawa penyumbang utama 

pencemaran udara di Semenanjung Malaysia adalah disebabkan oleh pembakaran bahan api fosil melalui aktiviti perindustrian, 

pengangkutan dan sistem pertanian. Empat model KRL menunjukkan bahawa PM10 bertindak sebagai penyumbang utama 

     ISSN 

1394 - 2506 

 



Azman et al:   SPATIAL AIR QUALITY MODELLING USING CHEMOMETRICS TECHNIQUES: A CASE 

STUDY IN PENINSULAR MALAYSIA 

 

1416 

 

kepada pencemaran udara Malaysia. Dari kajian ini, ia dapat membuktikan bahawa penggunaan teknik kemometrik boleh 

memberikan maklumat yang bermakna terhadap kebolehubahan ruang bagi data yang besar dan kompleks. Kajian yang lebih 

jelas mengenai kualiti udara dan rangkaian pemantauan reka bentuk kualiti udara yang baru dalam pengurusan pencemaran udara 

yang lebih baik dapat dicapai melalui kaedah-kaedah tersebut. 

 

Kata Kunci:  kualiti udara, kemometrik, pengenalan corak, Semenanjung Malaysia 

 

 

Introduction 

Air pollution control is needed to prevent the situation from deteriorating in the long term period [1,2]. Therefore, air 

quality monitoring network is a part of the preliminary strategy for the air pollution deterrence plan in Malaysia. A 

properly-designed of air monitoring network is a main component of any air quality control program. The operation 

and maintenance of air quality monitoring stations and tools for measuring the parameters of air quality are costly, 

so it is more favourable to use as few stations and parameters as possible to achieve the objectives of monitoring. 

Consequently, the application of chemometrics can be utilized to complement the monitoring strategy [3].  

 

Chemometrics in the environmental field is verified to be a functional tool to identify the sources of pollution such 

as in [2,4,5].  Chemometrics techniques include the interrelationship of faunal structure, physical-chemical 

characterization, and toxicity data that received from in-situ measurement and laboratory analysis. The analysis is 

considered to be the most suitable tool for the reduction and interpretation of meaningful data [5,6,7]. Unbiased 

methods such as hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal 

component analysis (PCA), and multiple linear regressions (MLR) were applied in air quality analysis.  

 

The application of diverse chemometrics statistical techniques for interpretation of the complex databases, permits a 

better understanding of air quality in the study region. Chemometrics methods also offer the recognition of the 

potential sources that are accountable for variations in air quality and manipulate the air quality. Therefore, the 

methods have been proven as priceless tools for developing suitable plans for efficient management of the air 

monitoring network [2,8].  The objectives of this study are to recognize the pollution sources and identify the most 

significant pollutant. 

 

Materials and Methods 

Study Sites 

14 stations (Figure 1 and Table 1) around Peninsular Malaysia were selected as a monitoring site in this study.  

There are no main natural disasters occurred in Peninsular Malaysia such as typhoon, volcanic eruption and 

earthquake. These stations were chosen due to the type of region which are urban, suburban, and industrial area.  

 

Data Collection 

The data for 14 air quality parameters from 14 stations were gathered from the Department of Environment (DOE), 

from January to December 2007. Ambient temperature (ºC), methane (CH4, ppm), carbon monoxide (CO, ppm), 

relative humidity (%), non-methane hydrocarbons (NmHC, ppm), nitrogen monoxide (NO, ppm), nitrogen dioxide 

(NO2, ppm), nitrogen oxides (NOx, ppm), ozone (O3, ppm), particulate matter (PM10, µg/cu.m), sulphur dioxide 

(SO2, ppm), total hydrocarbons (THC, ppm), ultra-violet B (J/m2hr) and wind speed (km/hr) were selected to study 

the influence of API values and the sources of pollution. The hourly data were used to form a monthly average, 

which comprises 168 datasets (12 data per stations x 14 stations) with a total of 2,352 observations (12 data per 

stations x 14 variables x 14 stations).  
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Figure 1.  Fourteen selected air quality monitoring stations in the Peninsular Malaysia 

 

 

Table 1.  The details of 14 monitoring stations around Peninsular Malaysia 

 

Station No. Site State Location Latitude Longitude 

Station 1 Johor SM Pasir Gudang 2, Pasir Gudang N01° 28.225 E103° 53.637 

Station 2 Terengganu SRK Bukit Kuang, Teluk Kalung, 

Kemaman 

N04° 16.260 E103° 25.826 

Station 3 Pulau Pinang Sek. Keb. Cenderawasih, Tmn. 

Inderawasih, Perai 

N05° 23.470 E100° 23.213 

Station 4 Selangor Jab. Bekalan Air Daerah Gombak N03° 15.702 E101° 39.103 

Station 5 Melaka Sek. Men. Keb. Bukit Rambai, 

Melaka 

N02° 15.510 E102° 10.364 

Station 6 Perak SM Jalan Tasek, Ipoh N04° 37.781 E101° 06.964 

Station 7 Negeri Sembilan Taman Semarak (Phase II), Nilai N02° 49.246 E101° 48.877 

Station 8 Pahang SK Indera Mahkota, Kuantan N03° 49.138 E103° 17.817 

Station 9 Kedah SK Bakar Arang, Sungai Petani N05° 37.886 E100° 28.189 

Station 10 Johor SM Vok. Perdagangan, Johor Baru N01° 29.815 E103° 43.617 

Station 11 Kelantan Maktab Sultan Ismail, Kota Bharu N06° 09.520 E102° 15.059 

Station 12 Selangor Country Heights, Kajang N02° 59.645 E101° 44.417 

Station 13 Pulau Pinang USM, Minden N05° 21.528 E100° 17.864 

Station 14 Kuala Lumpur S. M. Keb. Seri Permaisuri, Cheras, 

Kuala Lumpur 

N 03° 06.376 E 101°43.072 
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Hierarchical Agglomerative Cluster Analysis (HACA) 
In this study, HACA was used for clustering the spatial air monitoring station based on the Air Pollutant Index 

(API) data.  HACA is a statistical method that can classify the object in a data set [9], and known as the art of 

finding groups in data processing [10].  In this method, the samples to be clustered are defined in n-dimensional 

hyperspace and distances are computed accordingly. After a criterion of distance is defined in several algorithms, 

then it can be used to detect groups of the samples.  Samples that are close to each other are expected to be similar 

in one group [11].   

 

In this study, HACA is employed on the normal distribution dataset through the Ward’s method by means of 

Euclidean distances, as a measure of the relationship [12,13].  The outcome of this method depicted by a treelike 

structure known as a dendrogram.  The dendrogram demonstrated a visual summary of the clustering process, 

presenting a picture of the groups, and their proximity, with a reduction in dimensionality of the original data [14]. 

The linkage distance by a Euclidean distance accounted as Dlink/Dmax, which signifies the measure between the 

linkages distances divided by the maximal distance. The measure will be multiplied by 100 as a way to standardize 

the linkage distance signified by the y-axis [14]. Euclidean distance can be defined by equation 1: 

                                                             (1) 

 

where, d(x,y) is the Euclidean distance
 
between two items represented by xm and ym; p is the dimensional space of 

the variables.  

 

Discriminant Analysis (DA) 

DA is used to classify the object of unknown origin to one of several naturally occurring groups [15]. In this study, 

DA has been coupled with HACA to establish the significant different variables as well as for reducing the errors in 

groups such as in [6]. In each cluster, it creates a discriminant functions (DFs) [16], which can be determined by 

equation 2: 

 

                                                                                                       (2)

       

 

where, i is the number of groups (G), ki is the constant inherent to each group, n is the number of parameters used to 

classify a set of data into a given group, and wj is the weight coefficient assigned by DF analysis (DFA) to a given 

parameter (Pj). 

 

In this study, the air quality parameters were treated as independent variables, whereas the three significant groups 

were treated as dependent variables. Three modes of DA were applied, which are standard mode, forward stepwise 

mode and backward stepwise mode. DFs was created by a standard mode in order to evaluate the spatial variations 

in the air quality raw data. In the forward stepwise mode, variables were gradually eliminated starting with the most 

significant variable until no significant changes were found. In the backward stepwise mode, variables were 

eliminated gradually, starting with the least significant variable until no significant changes were found. 

 

Principal Component Analysis (PCA)  

In this study, the interrelated variables were analysed and interpreted by PCA. Theoretically, PCA is a method of 

creating new variables (known as principal components, PCs), which are linear composites of the original variables. 

The values of PCs created by PCA is known as principal component scores (PCS). The maximum number of new 

variables is equivalent to the number of original variables [12].  PCA can be utilized to identify the emission source 

[17]. In this study, the HACA was coupled with PCA in order to create the most powerful model recognition of 

emission sources. It presents the details on the most significant variables due to spatial and temporal variations, by 

putting them from the less significant variables with minimum loss of the original information [2, 8,18]. The PCs 

can be calculated as equation 3: 

 

                                                                  
 
                                  (3) 
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where, z is the component score, a is the component loading, x is the measured value of the variable, i is the 

component number, j is the sample number, and m is the total number of variables. 

 

Sometimes, the PCs produced by PCA are not interpreted well. Consequently, the varimax rotation has been applied 

to rotate the PCs for the interpretation purposes. Eigenvalues obtained from varimax rotation are the precursor of 

PCA. Eigenvalues more than 1.0 were considered as significant and subsequently varimax factors (VFs), which are 

the new groups of variables are generated [19]. The VFs values which are greater than 0.75 (> 0.75) is considered as 

“strong”, the values range from 0.50-0.75 (0.50 ≥ factor loading ≥ 0.75) is considered as “moderate”, and the values 

range from 0.30-0.49 (0.30 ≥ factor loading ≥ 0.49) is considered as “weak” factor loadings [2,20,21].  In this study, 

only factor loadings with absolute values greater than 0.75 were selected for the interpretation [12,21]. Emission 

source recognition of different air pollutants was completed based on different activities in the three significant 

clustered regions. The fundamental model of FA is stated as equation 4: 

 

                                     (4) 

 

where, z is the measured value of a variables, a is the factor loading, f is the factor score, e is the residual term 

accounting for errors or other sources of variation, i is the sample number, j is the variable number, and m is the 

total number of factors. In this study, PCA were applied to the classified datasets (14 variables) independently, 

based on the LPS, MPS and SHPS region that were classed by HACA. 

 

Multiple Linear Regressions (MLR) 

MLR is widely used for investigating the relationship among various independent and dependent variables by fitting 

a linear equation to observed data [22,23,24] and gives the percentage of the contribution of each parameter to the 

atmospheric pollution [25].  In this study, MLR was used to justify the relationship between the air quality 

parameters and the API data.  The model of the original air quality parameters-API was compared to the most 

significant parameters-API, in order to get a better model within clusters.  The model generalizes of the simple 

linear regression, in which each value of the independent variable is associated with a value of the dependent 

variable.  The model was calculated using the equation 5: 

 

                                                                                                     (5) 

  

where, Y is the response variable, and there are p – 1 explanatory variable x1, x2, …, xp–1, with p parameters 

(regression coefficients) β0, β1, β2, …, βp-1 and ε is an error associated with the regression. 

 

The coefficient of determination (R
2
) and root mean square error (RMSE) are the components that need to be 

considered in model performance. The value of R
2
 provides information about how well the model performs on 

external data [26].  RMSE is used to measure the residual error and it will be taken into account for estimation of 

the mean difference between observed and modelled value of the API. The smallest RMSE and the closest R
2
 value 

to 1, the better model shall be performed [5,21,26,27]. 

 

Results and Discussion 

Spatial Classification of Air Quality by HACA 

This part measures the historical values of API step by step to categorize the air quality station based on their 

homogeneity level by means of HACA. Figure 2 and Figure 3 shows the three significant regions illustrated by 

HACA and the potential pollution sources within the study regions. Three clusters that generated from the clustering 

method are known as: the low pollution source (LPS), moderate pollution source (MPS), and slightly high pollution 

source (SHPS) region. Cluster 1 (station 1, station 2, station 4, station 8, station 11 and station 13) corresponds to 

the LPS region. Cluster 2 (station 5) corresponds on the MPS region. Cluster 3 (station 3, station 6, station 7, station 

9, station 10, station 12 and station 14) corresponds on the SHPS region. 
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This result suggests that, for a shorter period of air quality assessment, the number of monitoring station can be 

reduced to only one station per each cluster of region. Three monitoring stations which are representing three 

significantly clustered regions are adequate to construct the whole monitoring network.  

 

 

 
 

Figure 2.  Dendrogram showing different clusters of sampling stations located across Peninsular Malaysia based on 

API 

 

 

 
 

Figure 3.  Classification of regions due to air quality by HACA in Peninsular Malaysia 
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Discrimination of Spatial Variation 

The air quality data post clustering of the monitoring stations into three significant clusters obtained by HACA was 

then undergoing with DA.  The finding from this analysis shows that the accuracy of spatial variation by means of 

standard mode, forward stepwise mode, and backward stepwise mode were 95.83% (14-variables), 94.05% (8-

variables), and 94.05% (9-variables), respectively such in Table 2. The discriminant variables resulting from the 

forward stepwise mode are NO2, SO2, PM10, CH4, humidity, NmHC, ultra-violet B, and wind speed, while in the 

backward stepwise included NOx as the additional variable for having a high spatial variation. Figure 4 shows the 

box and whisker plots of three significant regions. Nine selected air quality variables that showed high spatial 

variations in backward stepwise mode of DA were then applied for further discussion. 

 

 

Table 2 .  Classification matrix for spatial variations across the Peninsular Malaysia 

Sampling Regions % Correct Regions assigned by the DA 

    SHPS MPS LPS 

Standard DA mode (14-variables)    

SHPS 97.22 70 0 2 

MPS 91.67 1 11 0 

LPS 95.24 4 0 80 

Total 95.83 75 11 82 

     

Stepwise forward DA mode (8-variables)   

SHPS 91.67 66 0 6 

MPS 91.67 1 11 0 

LPS 96.43 3 0 81 

Total 94.05 70 11 87 

     

Stepwise backward DA mode (9-variables)   

SHPS 93.06 67 0 5 

MPS 91.67 1 11 0 

LPS 95.24 4 0 80 

Total 94.05 72 11 85 

 

 

Source Identification of Air Pollutants 

PCA was applied for identifying the source of air pollutants in this study. Four VFs were obtained in LPS and MPS 

region, and five PCs in the SHPS region based on the eigenvalues more than 1.0. The total variance for LPS, MPS, 

and SHPS region were correspond to 77.20%, 88.71%, and 79.95%, respectively. The finding of VFs, loadings of 

variables, and variance are illustrated in Table 3. 

 

Low Pollution Source (LPS) Region  

In the LPS region, VF1 contributes 41.73% of the total variance and has strong positive loadings on CO, NO2, non-

methane hydrocarbons, NO and NOx. In VF1, the presence of CO, NO2, NO and NOx are related to the fossil fuel 

combustion from agricultural systems [28], while the presence of non-methane hydrocarbons is related to the fossil 

fuel combustion from transportation [29]. Additional carbon can be sequestered as the effect of nitrogen deposition 

caused by agricultural practices [30]. This assumption is realistic, as the air quality in this region is good and most 

activities are restricted to agriculture and transportation. VF2 contributes 16.14% of the total variance, which has 

strong positive loadings on methane and wind speed. Strong negative loading is also shown by O3. VF2 is 

associated with biogenic emissions. The emission of CH4 is commonly occurring at the peat swamp area. Most of 

the LPS regions are located nearby the coastal area. The CH4 and O3 are closely correlated and near-simultaneous, 

though opposite in sign. The processes that had led to the accumulation of CH4 appeared to have led to the depletion 

of O3, to be precise, accumulation and depletion under a shallow night-time inversion [31]. VF3 and VF4 contribute 
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11.07% and 8.25% of the total variance, respectively; have a strong positive loading on ultra-violet B and ambient 

temperature and strong negative loading on humidity, which are considered as meteorological factors. When ultra-

violet B intensity is increased, automatically the ambient temperature is increased. However, the humidity will 

decrease due to the evaporation process. Despite of emission sources, ambient air quality can be strongly influenced 

by meteorological factors through the complex relations between diverse processes - emissions, transport, chemical 

transformation and wet and dry deposition [32]. 

 

 

                                              
 

Figure 4.  Box and whisker plots of (a) NO2, (b) SO2, (c) PM10, (d) Methane, (e) Humidity, (f) Non Methane 

Hydrocarbons, (g) NOx, (h) Ultraviolet B, and (i) Wind Speed generated by backward stepwise of DA 
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Source Identification of Air Pollutants 

PCA was applied for identifying the source of air pollutants in this study. Four VFs were obtained in LPS and MPS 

region, and five PCs in the SHPS region based on the eigenvalues more than 1.0. The total variance for LPS, MPS, 

and SHPS region were correspond to 77.20%, 88.71%, and 79.95%, respectively. The finding of VFs, loadings of 

variables, and variance are illustrated in Table 3. 

 

Low Pollution Source (LPS) Region  

In the LPS region, VF1 contributes 41.73% of the total variance and has strong positive loadings on CO, NO2, non-

methane hydrocarbons, NO and NOx. In VF1, the presence of CO, NO2, NO and NOx are related to the fossil fuel 

combustion from agricultural systems [28], while the presence of non-methane hydrocarbons is related to the fossil 

fuel combustion from transportation [29]. Additional carbon can be sequestered as the effect of nitrogen deposition 

caused by agricultural practices [30]. This assumption is realistic, as the air quality in this region is good and most 

activities are restricted to agriculture and transportation. VF2 contributes 16.14% of the total variance, which has 

strong positive loadings on methane and wind speed. Strong negative loading is also shown by O3. VF2 is 

associated with biogenic emissions. The emission of CH4 is commonly occurring at the peat swamp area. Most of 

the LPS regions are located nearby the coastal area. The CH4 and O3 are closely correlated and near-simultaneous, 

though opposite in sign. The processes that had led to the accumulation of CH4 appeared to have led to the depletion 

of O3, to be precise, accumulation and depletion under a shallow night-time inversion [31]. VF3 and VF4 contribute 

11.07% and 8.25% of the total variance, respectively; have a strong positive loading on ultra-violet B and ambient 

temperature and strong negative loading on humidity, which are considered as meteorological factors. When ultra-

violet B intensity is increased, automatically the ambient temperature is increased. However, the humidity will 

decrease due to the evaporation process. Despite of emission sources, ambient air quality can be strongly influenced 

by meteorological factors through the complex relations between diverse processes - emissions, transport, chemical 

transformation and wet and dry deposition [32]. 

 

Moderate Pollution Source (MPS) Region  

In the MPS region, VF1 contributes 50.03% of the total variance and has strong positive loadings on CO, NO2, SO2, 

CH4, NO and NOx; and strong negative loading on PM10. VF1 could be related to the composition of chemicals for a 

range of anthropogenic activities that comprise point source pollution particularly from industrial, residential, and 

vegetation areas in MPS region. Most of the pollutants in the MPS region are originated from burning of biomass 

and fossil fuels, particularly from industrial, residential and vegetation areas, motor vehicles, and natural emission 

sources [5,24,33]. VF2 contributes 18.01% of the total variance and proves strong positive loadings on non-methane 

hydrocarbons and total hydrocarbons, which are pointed to mobile source of pollution [29]. Access route for land 

transportation has been developed rapidly in the MPS region recently which makes the number of transportation on 

the road increased drastically. VF3 contributes 12.04% of the total variance and proves strong positive loadings on 

ultra-violet B and wind speed. VF3 is commonly related to meteorological factor. The life cycle of pollutants is 

influenced by chemical and meteorological factors, such as wind speed, temperature, precipitation, and solar 

radiation [24,34]. VF4 contributes 8.64% of the total variance, and has a strong positive loading on O3, which is 

related to small-scale fossil fuel combustion.  

 

Slightly High Pollution Source (SHPS) Region 

In the SHPS region, VF1, VF2, VF4 and VF5 contribute 28.26%, 20.21%, 10.29% and 9.40% of the total variance, 

respectively. They have strong positive loadings on CO, NO2, NO, NOx, CH4, total hydrocarbons, O3 and SO2. 
These factors contain chemical compositions that are involved with fossil fuel combustion in various means. The 

combustion of these fuels in industries and vehicles has been a main source of air pollution [5,24,35]. VF3 

contributes 11.80% of the total variance and has a strong positive loading on humidity and strong negative loading 

on ambient temperature and wind speed. VF3 is associated with meteorological factor. Air pollutant chemical 

reactions rely on ambient air states and are normally manipulated by short-wave radiation, air temperature, wind 

speed, wind direction and relative humidity [24,36]. It is tremendously vital to consider the consequence of 

meteorological states on air pollution, because they directly influence the emission effect of the atmosphere. 
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Table 3.  Loadings of environmental variables on the varimax-rotated PCs for water quality data collected from 

LPS, MPS and SHPS of the Peninsular Malaysia 

Variables 
LPS MPS SHPS 

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4 VF5 

CO 0.896    0.933    0.801     

NO2 0.939    0.773    0.747     

SO2     0.906        0.766 

PM10     -0.748         

O3  -0.749      0.827    0.888  

Ambient 
Temp 

   0.852       -0.752   

CH4  0.746   0.913     0.956    

Humidity   -0.756        0.768   

Non Methane 

Hydrocarbons 

0.887     0.941        

NO 0.873    0.857    0.918     

NOx 0.921    0.881    0.945     

Total 

Hydrocarbons 

     0.880    0.911    

UV B   0.769    0.799       

Wind Speed  0.749     0.961    -0.884   

Eigenvalues 5.92 2.49 1.37 1.02 6.5 2.34 1.56 1.12 3.96 2.83 1.65 1.44 1.32 

Variability 

(%) 

41.73 16.14 11.07 8.25 50.03 18.01 12.04 8.64 28.26 20.21 11.8 10.29 9.4 

Cumulative 

(%) 

41.73 57.88 68.95 77.2 50.03 68.04 80.08 88.71 28.26 48.47 60.27 70.56 79.95 

 

Multiple Linear Regression (MLR) of Air Pollutant Index (API) Modelling 

In this study, the source apportionment of air pollutant parameters (known as independent variable) was used to 

identify the potential of API (known as dependent variable) values. Four models were developed.  To develop the 

models, the independent variables were the air quality parameters (using original air quality parameters (14 

variables), air quality parameters from LPS (9 variables), air quality parameters from MPS (9 variables), and air 

quality parameters from SHPS (9 variables)). 

 

The finding of the study shows that the values of R
2 

and RMSE for the original air quality parameters-API were 

0.873 and 3.108, respectively from the goodness of fit statistics.  The values of R
2
 and RMSE for LPS were 0.865 

and 2.187, respectively.  The values of R
2 

and RMSE for MPS were 0.999 and 1.430, respectively. Meanwhile, the 

values of R
2 

and RMSE for SHPS were 0.868 and 2.195, respectively.  The proposed equation with R
2
 and RMSE 

can be seen in equation 6 - 9: 

 

Original air quality parameters (14 variables) 

Total API = - 0.15(CO) - 501.09(NO2) - 210.13(SO2) +0.70(PM10) + 58.94(O3) + 0.19(Temp) –  

                     0.24(CH4) - 0.14(Humidity) - 7.94(NMHC) - 576.91(NO) + 597.93(NOx) + 1.26(THC)  

                     + 6.43e
-03

(UVB) - 0.88(Wind Speed 10m) + 18.30 [R
2
=0.873 and  

                     RMSE=3.108]                                                          (6) 

 

LPS (9 variables) 

Total API = - 524.57(NO2) + 59.48(SO2) + 0.82(PM10) + 2.71(CH4) - 6.99e
-02

(Humidity)  

                       + 6.70(NMHC) + 87.74(NOx) + 1.47e
-
02(UVB) - 0.36(Wind Speed 10m) + 8.72    

                       [R
2
=0.865, RMSE=2.187]                                                                                                   (7)  
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MPS (9 variables) 

Total API = - 8216.13(NO2) + 1803.87(SO2) + 1.61(PM10) - 49.44(CH4) - 2.18(Humidity) –  

                       13.64(NMHC) + 5478.53(NOx) - 3.95e
-02

(UVB) - 1.28(Wind Speed 10m)  

                        + 229.68 [R
2
=0.999, RMSE=1.430]                                                                                                (8)    

 

SHPS (9 variables) 

Total API = 332.99(NO2) - 241.01(SO2) + 0.60(PM10) + 1.50(CH4) - 0.10(Humidity)  

                      + 2.00(NMHC) - 54.50(NOx) + 2.13e
-02

(UVB) - 0.15(Wind Speed 10m)  

                      + 16.37 [R
2
=0.868, RMSE=2.195]                                                                                                        (9 )     

 

 

Based on the equations 6 - 9, the MPS shows the highest coefficient of determination, R
2
 (0.999) contributed by the 

nine air pollutant parameters. The daily average concentrations of NO2, CH4, Humidity, NMHC, UVB, and wind 

speed 10m have a negative influence on the total API value in contrast to the average concentration of SO2, NOx, 

and PM10.  The second highest is from original air quality parameters (14 air pollutant parameter) model with the R
2
 

value of 0.873. The concentrations of CO, NO2, SO2, CH4, Humidity, NMHC, NO, and wind speed 10m show a 

negative influence compared to O3, PM10, NOx, Ambient Temperature, THC, and UVB. The third highest is in 

Cluster SHPS with R
2
 value is 0.868, in which  SO2, Humidity, NOx, and wind speed 10m show a negative 

influence on the total API while  NO2, PM10, CH4, NMHC, and UVB positively influenced to the total API.  

Meanwhile, Cluster LPS is the lowest of R
2
 value (0.865) in this study. Apart from NO2, Humidity, and Wind speed 

10m, it is positively influenced by the SO2, PM10, CH4, NMHC, NOx, and UVB.  From the finding, Cluster MPS has 

been selected as the best model due to the smallest RMSE and the closest R
2
 value of 1 when compared among 

tested parameters.  This is because the better model shall be performed if the value of RMSE is smaller than the 

other and closest of R
2
 value to 1 [5,26,27].  

 

 
Figure 5. Bar chart of the standardized coefficient for the independent variables of (a) Original air quality 

parameters, (b) LPS, (c) MPS, and (d) SHPS 
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Figure 6 represents the residual analysis of the observed and predicted of the total API using the MLR modelling for 

original air quality parameters and 3 clusters.  The findings have shown that the deficiency of the model for original 

air quality parameters, LPS, MPS, and SHPS, which the data sets indicate a great difference in the range of -8 to 4, -

3 to 4, -0.6 to 0.8, and -6 to 2, respectively.  The verification of the model was influenced by the outlier observation 

as illustrated in Figure 7, which from the actual total API indicates that some of the observations were out from the 

95% of the confidence interval range (lower and upper boundary) especially for the model of original air quality 

parameters, LPS, and SHPS, but contrast to MPS model. The main objective of plotting this graph is to prove that 

the MLR model is suitable to be used for total API prediction, because it gives the great difference between 

predicted total API and calculated total API.    

 

 
 

 
 

 

 
 

 

 

a 

b 

c 
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Figure 6.  Scatter plot diagram of standardized residuals of (i) actual API, and (ii) predicted API for: (a) original air 

quality parameter model, (b) LPS model, (c) MPS model, and (d) SHPS model. 

 

 

 

Figure 7.   Scatter plot diagram of the API (predicted) versus the actual API of (a) original air quality parameter 

model, (b) LPS model, (c) MPS model, and (d) SHPS model. 

d 
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Conclusion 

From this study, it can be concluded that the spatial variations of air quality data in Peninsular Malaysia were 

successfully studied by applying chemometrics techniques. 14 monitoring stations were grouped into three 

significant diverse cluster regions, known as LPS, MPS, and SHPS by using HACA. Based on the finding from 

HACA, a better monitoring network approach can be proposed which could lessen the quantity of monitoring 

stations. The grouped regions made by HACA were confirmed by DA with 94.05% accuracy of spatial variation for 

both forward and backward stepwise modes. Eight discriminant variables were selected for forward stepwise mode 

while nine discriminant variables were selected for backward stepwise mode. The nine variables obtained from 

backward stepwise mode can be used for a new design of air quality monitoring network instead of taking 14 air 

quality variables into account. To identify the source of air pollution, PCA was done. Four VFs were found for LPS 

and MPS regions, with total variance of 77.20% and 88.71%, respectively. In the SHPS region, with the total 

variance of 79.95%, only five VFs were obtained. In this study, the sources of variations are expected derived from 

industrial emissions, transportation emissions, agricultural systems, fuel combustions of peat swamp, and 

meteorological factors. For LPS and MPS regions, four variables were identified to be dependable for the major 

variations. For SHPS region, five variables were identified to be dependable for the major variations. Based on 

PCA, air pollution sources are expected to come from fuel combustion of peat swamp, transportation emissions, 

large-scale agricultural systems and meteorological factors in the LPS region. The air pollution sources in MPS 

region are related to transportation emissions, small or medium industrial emissions, small-scale agricultural 

systems and meteorological factors. The major sources of variations in the SHPS region are expected derived from 

large-scale industrial emissions, transportation emissions, and meteorological factors. MLR analysis was done to 

identify the variability of the proposed equation to predict values of the total API. When comparing from four 

models developed, the R
2
 values were found to be strong because they were high and significant at p-value (< 0.05). 

The MPS model shows the highest R
2
 with the value of 0.999, followed by the original air quality parameter, SHPS, 

and LPS model with the value of 0.873, 0.868, and 0.865, respectively. In this study, the finding also shows that 

PM10 contributes the most of API in atmosphere compared to the other pollutants and this pollutant can be 

categorized as the primary pollutant in Malaysia. For a better and effective air quality management, a new air 

quality monitoring network should be designed in term of practical and cost-effective.  
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