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Abstract

This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most
significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31
parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were
spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters
from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise
discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76% in the total variance and attributes
the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear
regression and principal component scores indicates that 41% of the total pollution load is from rock weathering and untreated
waste water, 26% from waste discharge, 24% from surface runoff and 7% from faecal waste. This study proposes a reduction in
the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and
multivariate technique can provide a simple representation of complex and dynamic water quality characteristics.

Keywords: multivariate techniques, source apportionment, multiple linear regression, principal component analysis; Kinta river;
water pollution

Abstrak

Kajian ini bertujuan untuk menyiasat variasi bagi ruang dalam mengenalpasti ciri-ciri di stesen pemantauan kualiti air,
mengenalpasti parameter yang paling penting dan sumber utama kemungkinan terhadap pencemaran dan membahagi sumber
kategori di Sungai Kinta. 31 parameter yang dikumpul dari lapan stesen pemantauan selama lapan tahun (2006-2013) telah
digunapakai dalam kajian ini. Lapan stesen pengawasan telah telah dibahagikan kepada tiga kelompok bebas dalam bentuk
dendrogram. Pengurangan mendadak bilangan parameter yang dipantau dari 31 parameter kepada lapan dan sembilan parameter
penting (P <0.05) telah dicapai dengan menggunakan kaedah langkah demi langkah ke hadapan dan langkah demi langkah ke
belakang melalui analisis pembezalayan (AP). Analisis komponen utama (AKU) menyumbang lebih daripada 76% dalam jumlah
varians dan sifat-sifat punca pencemaran kepada proses antropogenik dan semula jadi. Pembahagian sumber menggunakan
pelbagai regresi linear gabungan dan skor komponen utama menunjukkan bahawa 41% daripada jumlah beban pencemaran
adalah daripada luluhawa batu dan air sisa yang tidak dirawat, 26% daripada pelepasan sisa, 24% daripada air larian permukaan
dan 7% daripada sisa najis. Kajian ini mencadangkan pengurangan dalam bilangan stesen pemonitoran dan parameter untuk
pengurusan kos yang berkesan dan masa dalam proses pemantauan dan teknik multivariat boleh menyediakan perwakilan yang
mudah untuk ciri-ciri kualiti air yang kompleks dan dinamik.

Kata kunci: teknik multivariate, sumber pembahagian; regresi linear, analisis komponen utama; Sungai Kinta; pencemaran air
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Introduction
Harnessing the availability of qualitative water and minimizing its vulnerability of been exposed to pollution is a
challenging task for most societies in the developing nations. Water security and conservation requires the provision
and protection of an acceptable quality and quantity of clean water [1]. Water quality is a term used to classify the
status of the chemical, physical and biological characteristics of water based on its uses [2]. Nevertheless, the
degeneration of water quality affects the health status of local inhabitants, biodiversity and the ecosystem balance in
general [3,4].

River basin serves as the major source of water resources for domestic, agricultural practices, efficient inland
transport system and industrial use [5,6]. Even though it is a renewable resource, little effort has been channeled
towards its conservation and pollution risk assessment [7]. A river basin is an interconnected system of main river
course and its tributaries [5]. River water quality can easily be degraded by pollutants induced by anthropogenic and
natural processes [8]. This is because most fresh waters are converted to the endpoint of effluent discharge from
industrial and domestic sewage [9]. Whatever the case, the rapid economic development, change in land use pattern
to industrial, agricultural practices and concentration of settlement along the river course makes river basin
susceptible to pollution [10,11,12]. A report by The Environmental Protection Agency (EPA) indicates that about
one-third of the global surface water are unsafe for numerous uses and pose a serious threat to the general wellbeing
of man and his environment. This assertion has created awareness on ensuring global water quality [13]. Under the
8" and 9" Malaysia plan, several efforts have been made since 2001 to assess the rate at which water is been
polluted [14].

However, an effective management and understanding of the chemical, biological and hydro-morphological pattern
of river requires a fundamental application of robust statistical technique [15] for efficient pollution control and
water quality management [16]. In order to understand the economic, environmental and social impact of water
pollution, it is imperative to model the major possible sources and percentage contribution of water pollutants [17].
The application of pattern recognition and environmetric modelling techniques (multivariate statistics) is a
sophisticated method for understanding water quality characteristics [18]. This technique have been applied by
[4,8,9,18 — 28] to model different environmental issues. In this study, multivariate techniques such as CA, DA, PCA
and MLR were used to model the complex and dynamic characterisation in the level of pollution in the Kinta River.
CA was applied as an unsupervised pattern recognition technique in order to classify the water quality monitoring
sites into interrelated groups. The most discriminating parameters with a drastic reduction in the number of
significant variables were identified using DA. The sources of pollution were identified using PCA. The source
category apportionment was modelled using MLR.

The objectives of this study are; to determine the spatial characteristics in the similarities of water quality
monitoring processes in the Kinta River; to identify the most statistical significant parameters and possible sources
of water pollution; and to apportion the mass source contribution for each source category within the study area.

Materials and Methods

Study Area

Kinta River is located in Perak which is the second largest state in Malaysia in terms of land mass (21,006 km?).
Ipoh is the capital of Perak situated in the Kinta Valley [29]. The River is divided into upstream, middle stream and
downstream with eight water quality monitoring sites covering the entire river network pattern. The upstream region
is monitored by two stations (2PK22 and 2PK24), the middle course is assigned with three stations (2PK25, 2PK34,
2PK59) and the downstream of the river is stationed with three monitoring sites (2PK19, 2PK33, 2PK60). Kinta
River is a primary source of water for the inhabitants in Ipoh and Perak (Malaysia). It has 8 tributaries and gains its
source from Gunung Korbu in Ulu Kinta Perak and stretches to about 2420km? The capacity of the river was
boosted by constructing a dam to supply about 639,000 m? of water daily until 2020 [29]. The basic land use pattern
within the catchment area ranges from residential, industrial, mining, oil and rubber palm plantations and logging
[30]. The location of the study area is described in Table 1 and Figure 1.
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Table 1. Location of the study area based on the distance, altitude and coordinates

Stations Distance (KM) Altitude Coordinates
From source Between stations X Y
1599 518256.14 367777.98
2PK22 155 155 264 516816.52 352365.48
2PK24 224 6.9 50 512701.07 346869.20
2PK25 339 115 34 502746.06 341721.84
2PK59 375 3.6 28 499164.57 340907.99
2PK34 439 6.4 23 492824.41 338308.55
2PK33 576 13.7 11 479622.81 343084.89
2PK60 648 7.2 9 472475.77 342025.07
2PK19 77.1 12.3 7 462757.07 336011.65
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Figure 1. Description of the study area showing water quality monitoring sites in the Kinta River

Data Collection

Thirty one recent physicochemical water quality parameters monitored over a period of eight years (2006- 2013)
were sourced from the Department of Environment Malaysia. The monitored parameters comprises of dissolved
oxygen (DO); biochemical oxygen demand (BOD); chemical oxygen demand (COD); suspended solid (SS); pH;
ammonia nitrogen (NH3-NL); NH4Ftemperature (°C),COND, salinity (SAL), turbidity (TUR), dissolved solid
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(DS) , total solid (TS) nitrate nitrogen (NOs-N), chloride (Cl), phosphate phosphorous (PO,-P), arsenic (AS),
mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), Zinc (Zn), calcium (Ca), iron (Fe), potassium (K),
magnesium (Mg), sodium (Na), oil and grease (OG), methylene blue active substances (MBAS), E-coli and
Coliform.

Cluster Analysis (CA)

CA is an unsupervised pattern recognition technique used to aggregate a similar group of entities that portrays a
strong internal (within-class) homogeneity and strong external (between classes) heterogeneity [18]. These spatial
classes of water quality sampling sites can be illustrated using a dendrogram that measures the degree of risk
homogeneity through Ward's method and Euclidean distance [31]. A dendrogram also highlights a reduction in the
dimensionality and complexity of the data sets. CA has the ability to extract the pattern of surface water quality that
can be used as a guide for future sampling [32].

Discriminant Analysis (DA)

DA is a supervised technique that can identify the most statistically significant parameters that best discriminate
between natural occurring groups. It is used to construct new discriminate functions (DFs) from an existing group in
order to explain the spatial characterization of surface water pollution [19,25]. DFs are calculated using equation 1:

F (G) = Ki+ Y"=1 w; Pij 1)

where i = the number of group G; k; = constant inherent to each group; n = the number of parameters used to
classify a set of data into a given group; w; = the weight coefficient assigned by discriminant function analysis
(DFA) to a given parameter P;,

Principal Component Analysis (PCA)

PCA is a powerful pattern recognition technique used in identifying the major possible sources of pollution
[18,33,34]. It can be used to transform original observed variables to new orthogonal, uncorrelated variables called
principal components (PCs) preserved as a linear combination of the original variables [20]. PCA reduces the
dimensionality of large data sets without loss of the original variable [35].

Zij = Qi Xy F Qi X e+ 3 Xy )

where z is the component score, a is the component loading, x is the measured value of the variable, i is
the component number, j is the sample number, and m is the total number of variables.

Furthermore, the varimax rotation of the PCs generated by PCA with eigenvalues greater than one is imperative to
simplify its complexity for proper interpretation [19]. The varimax rotation is used to obtain new set of variables
called varimax factors (VFs) [36,37] using factor analysis method (FA). FA can extract variables with strong
positive loading that can account for high variability. According to [38] the strength of a factor loading is classified
into strong (> 0.75), moderate (0.75-0.50) and weak (0.50-0.30). FA is calculated using equation 3:

z; = af1fli +af2f21 +... +afm fmi +efi ©)

where z is the measured value of a variable, ais the factor loading, f is the factor score, e isthe
residual term accounting for errors or other sources of variation, i is the sample number, j is the variable
number, and m is the total number of factors.

Multiple Linear Regression Model (MLR)
MLR is a statistical technique that is used to predict the variability that exists between the dependent and
independent variable [20,27,39,40]. Thus, the regress model can be represented as [41].

Yi=Pfo T PXiit e + B + & EQ @

where i = 1 ... n, fo, P1 and py are regression coefficient, x; and xy are independent variables and ¢ is error
associated with the regression.
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However, the percentage mass contribution of each identified possible source category was modelled using a
combined principal component scores (PCS) after varimax rotation and MLR. The leave-one-out cross-validation
technique was introduced to the model in order to examine the response in the network error if an input variable is
removed at a time [42]. However, the deterioration in the network performance if one principal component score is
eliminated determines the efficacy and significance of the variable in the overall network performance [43].
Invariably, the coefficient of determination “R?”, adjusted coefficient of determination “Adjusted R’ and Root
mean square error “RMSE” were used to test the goodness of fit in the model performance [39,40].

Results and Discussion
Descriptive statistics
The descriptive statistics of the observed parameters summarizes the entire data sets for a better in order to simplify
the observations. However, Table 2 below comprises of the total number of observations in the data set, the
minimum and maximum values, media, mean, variance and standard deviation.

Table 2. Summary statistics of the observed parameters from 2006-2013

Parameters  Observations Minimum Maximum Mean Std. deviation
DO 198 0.280 9.440 4,923 2.054
BOD 198 1.000 54.000 4.227 4.445
COoD 198 3.000 108.000 23.682 14.781
SS 198 0.500 1340.000 100.841 141.249
pH 198 4.540 8.290 7.020 0.462
NH3-NL 198 0.005 3.940 0.343 0.591
NH4F 198 0.005 2.640 0.446 0.326
TEMP °C 198 23.480 32.930 27.894 1.821
COND 198 6.000 327.000 118.682 67.546
SAL 198 0.010 0.150 0.055 0.032
TUR 198 1.000 675.100 93.897 107.957
DS 198 11.000 180.000 60.364 33.371
TS 198 17.000 1402.000 161.882 143.920
NO; 198 0.005 5.580 0.584 0.612
Cl 198 0.500 25.000 6.306 4.834
PO4 198 0.005 0.400 0.058 0.069
As 198 0.001 0.049 0.010 0.008
Hg 198 0.000 0.000 0.000 0.000
Cd 198 0.001 0.001 0.001 0.000
Cr 198 0.001 0.023 0.003 0.005
Pb 198 0.005 0.005 0.005 0.000
Zn 198 0.005 0.090 0.022 0.019
Ca 198 0.380 37.200 12.587 7.739
Fe 198 0.005 2.050 0.194 0.242
K 198 0.050 13.400 3.152 1.997
Mg 198 0.050 7.500 1.821 1.035
Na 198 0.050 23.100 5.677 3.567
oG 198 0.500 2.000 0.540 0.184
MBAS 198 0.025 0.025 0.025 0.000
E-coli 198 96.000 500000.000 29371.281 54546.213
Coliform 198  4100.000 1700000.000 175869.697 248608.836
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Spatial Classification in The Similarities of Water Quality Monitoring Sites

The eight water quality monitoring sites were unsupervisedly and spatially classified based on their level of
similarities and differences in the characteristics of pollutant concentration in the study area. The resultant output
gave a dendrogram comprising of three distinct independent clusters as displayed in Figure 2.

Cluster 1 is classified as a low pollution area (LPA) comprising of two clusters (2pk33 and 2pk22) located in both
the upper course and lower course of the Kinta River. The two stations have a strong identity in terms of their
similarities in the level of pollution. Cluster 2 comprises an integration of three water quality monitoring sites
(2pk60, 2pk19 and 2pk24) with a strong similarities in their pollution level. This cluster represents a moderate
pollution area (MPA). Two stations 2pk60 and 2pk19 are located in the lower course of the River while 2pk24 is
situated at the upper course. The third cluster (2pk59, 2pk34 and 2pk25) is classified as the high pollution area
(HPA).

However, from the dendrogram in Figure 2 it is crystal clear that one station in each cluster can give a relative
spatial representation of the water quality monitoring processes of the Kinta River. This reveal the redundancy
nature of some monitoring sites that in turn increase cost of equipment installation, cost of labour and time wastage.
Based on the findings, it is advisable to reduce and relocate station 2pk33, 2pk60 and 2pk24 as well as 2pk25 and
2pk34 to other Rivers that have insufficient monitoring equipment since 2pk22, 2pk59 and 2pk19 in the three
clusters represent the upper, middle and lower courses of the Kinta River. This action will not only reduce the
overhead cost but also time management during the monitoring processes.
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Figure 2. Dendrogram of spatial similarities in the monitoring sites

Spatial Identification of the Most Discriminating Parameters

The 36 water quality parameters monitored in the Kinta River represents a complex relationship that makes it
tedious to pinpoint the most discriminating parameters affecting the water quality. Based on the clusters developed
by HACA, the most significant parameters were determined using standard mode, forward stepwise and backward
stepwise DA. To achieve this all the observed parameters were introduced as the independent variables while the
three clusters were used as the dependent variables. The result for standard DA gave a reduction in the number of
observations indicating that only 15 parameters (P<0.0001) discriminate best with a strong assignation of 87.37% in
the undimensional test of equality of the mean of class. Using the forward stepwise DA, only 8 parameters
discriminate best with a P-value <0.0001 and correct assignation of 84.34%. This indicates a significant decrease in
the number of observed parameters. Backward stepwise DA gave a correct assignation of 86.87% showing that
only 9 parameters discriminate best with a p-value <0.0001.
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Identification of Major Pollution Sources in The Kinta River

The compositional pattern in the characteristics of the examined parameters and the major possible sources of
pollution were identified using PCA/FA. Nine varimax factors rotated to an eigenvalue greater than one (>1) were
obtained with a cumulative variance greater than 76% for the entire factors. In order to identify the source of
pollution only factors with strong loading (> 0.75) capable of explaining the variation in the water quality pattern
were selected for interpretation as highlighted in Table 3 and Figure 3. Furthermore, Figure 3b describes the scree
plot diagram where the cut-off points for strong factors with eigenvalue greater than one are selected for

interpretation.

Table 3. Identification of the most discriminating parameters based on clusters

Sampling Sites Regions
Cluster 1  Cluster 2 Cluster 3 9% correct
Standard mode 15 parameters
Cluster 1 47 6 1 87.04%
Cluster 2 6 64 2 88.89%
Cluster 3 0 10 62 86.11%
Total 53 80 65 87.37%
Forward stepwise 8 parameters
Cluster 1 47 6 1 87.04%
Cluster 2 8 60 4 83.33%
Cluster 3 0 12 60 83.33%
Total 55 78 65 84.34%
Backward stepwise 9 parameters
Cluster 1 47 7 0 87.04%
Cluster 2 7 63 2 87.50%
Cluster 3 0 10 62 86.11%
Total 54 80 64 86.87%
PCA loading (D1 and D2: 39.37 %) Scree plot
after Varimax rotation
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Figure 3. (a) PCA loading and (b) scree plot diagram after varimax rotation
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Table 4. Factor loading after varimax rotation

Variables VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9
DO -0.612  -0.207 -0.224 0.004 0.227 0.226 -0.064 0.088 -0.166
BOD 0.039 0.095 0.173 0.017 0.090 -0.050 0.863  -0.097 0.110
COoD 0.202 0.198 0.034 0.123 -0.221 0.094 0.816 0.014  -0.093
SS -0.063 0.977 0.009 0.001 -0.026 -0.031 0.071  -0.016  -0.002
pH 0.070  -0.061 0.084 -0.085 0.014 0.869 -0.001 -0.019 0.113
NH3-NL 0.538 0.006 -0.166 -0.063 0.465 0.220 0.180 0.167  -0.103
NH4F 0.386 -0.022 -0.162 -0.059 0405 -0.132 0.142 0.269  -0.153
TEMP °C 0.566  -0.188 0.031 -0.084 -0.137 -0.281 -0.123  -0.099 0.391
COND 0.846 -0.016 0.186 -0.103 0.035 -0.087 -0.001 0.077 0.217
SAL 0.848 -0.002 0.185 -0.119 0.050 -0.071 0.016 0.080 0.214
TUR -0.129 0.944 0.107 -0.024 -0.054 0.014 0.047 -0.028 -0.006
DS 0.931 0.023 0.020 0.007 0.068 0.010 0.097 0.047 0.103
TS 0.154 0.962 0.018 0.013 0.004  -0.025 0.087  -0.005 0.030
NO3 0.185 0.053 -0.191 0.055 0.088 0.199 0.058 -0.020 0.772
Cl 0.829 -0.035 0.079 0.038 0.124 0.016 0.057 -0.031 -0.120
PO4 0.324 -0.124 0.117 0.110 0.708 0.126 -0.126  -0.078 0.165
As 0.724  -0.079 0.210 0.111 -0.075 -0.056 -0.034 0.096 0.125
Hg -0.072  -0.058 0.035 -0.028 -0.032 0.004 -0.083 0.872 -0.012
Cd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cr 0.387 0.040 -0.065 0.189  -0.593 0.452 0.173 0.095 0.030
Pb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Zn 0.071 0.063 -0.130 0.778 -0.090 -0.078 0.212 0.173 0.267
Ca 0.925 0.075 0.055 -0.096 -0.006 0.068 0.024 -0.118 0.018
Fe -0.197  -0.058 0.064 0.840 0.057 -0.006 -0.031 -0.172 -0.163
K 0.688 -0.102 0.179 0.220 0.048 0.169 0.215 -0.173  -0.260
Mg 0.864 -0.010 -0.044 -0.005 -0.090 0.076 0.024 -0.131 0.024
Na 0.868 -0.047 -0.046 -0.001 0.138 0.219 0.100 0.050 -0.171
0G -0.046  -0.017 0.683 -0.045 -0.085 0.206 0.025 0.048 0.044
MBAS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
E-coli 0.282 0.072 0.832 0.007 0.056 0.092 0.127 0.007  -0.066
Coliform 0.213 0.159 0.775 -0.027 0.051 -0.140 0.109 -0.003 -0.146
Eigenvalue 8.396 3.314 1.988 1.849 1.427 1.374 1.130 1.033 1.004
Variability

(%) 29.985 11.834 7.098 6.604 5.095 4.906 4.035 3.690 3.586
Cumulative

(%) 29.985 41.819 48917 55,521 60.617 65.523 69.558 73.248 76.835
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The first varimax factor (VF1) explains 29.9% of the total variance with a strong positive loading for COND
(0.846), SAL (0.848), DS (0.931), ClI (0.829), Ca (0.925), Mg (0.864) and Na (0.868). The composition of these
factors is characterised with chemical parameters rich in mineral components from untreated wastewater discharge
and weathering of existing parent rock [8,19]. Ca, Na, Mg affect the level of water hardness [19] thereby
accelerating the cases of kidney stones and heart diseases [44]. COD SAL and DS allow high electrical flow due to
high concentration of ions. Conductivity ions originate from dissolve salt and inorganic materials such as chloride,
sulphides, alkalis and carbonate compounds. However, water with high salinity is likely to be conductive in nature.
Cl encourages corrosion when in contact with metal ions thereby produce high concentration of metal in drinking
water with a salty taste [45]. Ca occurs naturally in water since its primary origin is from parent rock. The high
concentration (Ca) can lead to colorectal cancer, obesity, kidney stone, stroke and hypertension [46]. The strong
loading for Mg can encourage low blood pressure, slow breathing, unconsciousness and death [47].

VF2 have strong positive loading for SS (0.977), TUR (0.944), and TS (0.962) that explains 11.8% of the total
variance in the data sets. The composition pattern in the source of these pollutants originates from surface runoff in
the solid form from field with high concentration of soil and waste disposal activities [19]. High TUR reflect the
presence of silt, clay, organic matter and other microorganism [48] capable of altering the level of water clarity that
limits light penetration as well as affect aquatic life. TUR can also encourage the existence of virus and bacteria
parasites that can cause diarrhoea and headache [48].

VF3 have strong positive loading for E-coli (0.832) and coliform (0.775) explaining 7.1% of the total variance. The
source of these pollutants is from faecal waste. VF4 exhibit a strong loading for Zn (0.778) and Fe (0.840) that
accounts for 6.6% of the total variance in the datasets. These pollutants are likely to originate from industrial waste
water discharge triggered by anthropogenic point source activities [49]. Metals originating from the discharged
industrial waste and weathering of parent rocks are the major sources of Fe [48]. The presence of Zn in water within
the permissible limit provides organisms the basic for physiological and metabolic processes. Its excesses affect
human health [50].

VF6 represent a strong positive loading (0.869) for pH. High concentration of pH denotes the presence of alkaline
that originates from erosion of river banks and weathering of existing parent materials rich in carbonates and
bicarbonates limestone rocks. The presence of alkaline encourages the growth of algae, changes the water
appearance to a greener colour [51,52]

VF7 accounts for 4% of the total variance with a strong positive loading for BOD (0.863) and COD (0.816). These
factors represent organic pollutants from point sources such as waste water discharge from treatment plants,
domestic waste water and discharge from industrial effluent [4]. VF8 (Hg, 0.872) represent pollution discharge from
industrial and mining activities [53] explaining 3.7% of the total variance in the data sets.

VVF9 have a strong positive loading for NOj3 that account for 3.6% of the total variance in the data sets. The source
of this pollutant comes from agricultural related activities such as fertilizer application, pesticides and organic
manure [54]. Application of nitrogen fertilizer by farmers to boast farm yield may undergo nitrification processes
[49].

Source Apportionment using A Combined PCS/MLR

The mass contribution of each source category based on the leave-one-out cross-validation method is displayed in
Figure 4. Each category comprises a combination of factors that explains the source apportionment of pollution in
the study area.

Based on the findings, rock weathering and untreated waste water from point source and non-point sources
contributes about 41% of the total pollution load in the Kinta River. The composition of these parameters affects the
mineralogical content of the river. Point source pollution of waste discharged from industrial effluent, treatment
plants and domestic sewage contributes 26% of the pollution load. The next most significant source apportioned
accounted for 24% explaining an influence from natural processes triggered by surface runoff of soil and waste
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materials. Faecal waste contributes 7% in the total pollution load, followed by 1% from erosion and weathering
processes. The remaining category ranges from 0.1% to 0.2%.

This method reveals the most significant variables that need to be retained and those that are redundant during
subsequent monitoring processes. It also provides a simple explanation in the source classification of pollution in
the Kinta River that can be used as a base by government and other stakeholders to develop policies and strategies
to limit pollutant discharge and improve water quality for numerous uses.

Source category apportionment

Pomt source Industrial Agncultural non-
pollution (waste S .\{mmgb activities \/— point Rock weathermg and
discharge) 0.1% : sources wntreated

0.1% waste water
41%

26%

Non-point source
(erosion &
weathenng)

1%

Antropogenic point
source (industrial
discharge)
0.2%

faecal

waste ;
79,  Surface nmoff of soil

& waste matenals
24%

Figure 4. Pie chart for mass source contribution of water pollution

Conclusion

In this study, a reduction in the number of monitoring sites and observed parameters in the Kinta River were
proposed based on the multivariate findings using HACA, DA, PCA and MLR. Spatial classification of the eight
water quality monitoring station into three clusters was achieved using HACA. This classification reveals the level
of similarities and redundancy in the characteristics of the monitoring processes. However, the findings for HACA
indicates that three stations (2Pk22, 2Pk59 and 2Pk19) located in the upstream, middle and lower course can give a
relative spatial representation of the water quality monitoring processes in the Kinta River. This will reduce cost and
time of monitoring unnecessary sites. The 31 physicochemical parameters were also reduced to 8 most significant
parameters with a P-value <0.0001 and a correct assignation of 84.34% using the forward stepwise DA. In the
subsequent monitoring processes, it is suggested that these 8 parameters can provide a spatial representation of the
water quality status in the Kinta River. This will also reduce the cost and time spent in observing the remaining 23
parameters. The result for PCA revealed that anthropogenic activities (industrial, treatment plants and domestic
waste discharge, mining activities, fertilizer and pesticides) and natural processes (weathering of parent rock,
surface runoff and erosion of river banks) constitutes the major possible sources of pollution in the study area.
Furthermore, the mass source category apportionment was achieved using a combined MLR and principal
component scores. In this regard, rock weathering and untreated waste water contributes 41% of the total pollution
load, 26% by point source waste discharge, 24% by surface runoff, 7% faecal waste, erosion and weathering 1% and
the remaining ranges from 0.1-0.2%. Even though water quality parameters exhibit a complex characteristic,
multivariate technique can provide a simple explanation for a proper policy implementation by government and
stakeholders involve in water quality management.

1028



Malaysian Journal of Analytical Sciences, Vol 19 No 5 (2015): 1019 - 1031

Acknowledgement

The authors wish to extend their sincere appreciation to the Department of Environment Malaysia (DOE) and the
East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin Malaysia for their
continuous support.

10.

11.

12.

13.

14.

15.

16.

17.

References
Mustapha, A., Aris, A. Z., Ramli, M. F. and Juahir, H. (2012). Spatial-temporal variation of surface water
quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach. Journal of
Environmental Science and Health Part A 47(11): 1551-1560.
Khalil, B., Ouarda, T. B. M. J. and St-Hilaire, A. (2011). Estimation of water quality characteristics at
ungauged sites using artificial neural networks and canonical correlation analysis. Journal of Hydrology 405(3):
277-287.
Zhang, Q., Li, Z., Zeng, G, Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality
using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China.
Environmental Monitoring and Assessment 152(1-4): 123-131.
Satheeshkumar, P. and Khan, A. B. (2012). Identification of mangrove water quality by multivariate statistical
analysis methods in Pondicherry coast, India. Environmental Monitoring and Assessment 184(6): 3761-3774.
Vieira, J., Fonseca, A., Vilar, V. J. P., Boaventura, R. A. R. and Botelho, C. M. S. (2012). Water quality in Lis
River. Portugal. Environmental Monitoring and Assessment 184(12): 7125-7140.
Ogwueleka, T. C. (2015). Use of multivariate statistical techniques for the evaluation of temporal and spatial
variations in water quality of the Kaduna River, Nigeria. Environmental Monitoring and Assessment 187(3): 1-
17.
Usman, U. N., Toriman, M. E., Juahir, H., Abdullahi, M. G., Rabiu, A. A. and Isiyaka, H. (2014). Assessment
of Groundwater Quality Using Multivariate Statistical Techniques in Terengganu. Science and Technology
4(3): 42-49.
Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F. and Kura, N. U. (2013). River water quality assessment
using environmentric techniques: case study of Jakara River Basin. Environmental Science and Pollution
Research 20(8): 5630-5644.
Wang, Y. B., Liu, C. W, Liao, P. Y. and Lee, J. J. (2014). Spatial pattern assessment of river water quality:
implications of reducing the number of monitoring stations and chemical parameters. Environmental
Monitoring and Assessment, 186(3): 1781-1792.
Mustapha, A., Aris, A. Z., Juahir, H., Ramli, M. F. and Kura, N. U. (2013). River water quality assessment
using environmentric techniques: case study of Jakara River Basin. Environmental Science and Pollution
Research 20(8): 5630-5644.
Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality
using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China.
Environmental Monitoring and Assessment 152(1-4): 123-131.
Mustapha, A., Aris, A. Z., Ramli, M. F. and Juahir, H. (2012). Spatial-temporal variation of surface water
quality in the downstream region of the Jakara River, north-western Nigeria: A statistical approach. Journal of
Environmental Science and Health Part A, 47(11): 1551-1560.
Mustapha, A., Aris, A. Z., Yusoff, F. M., Zakaria, M. P., Ramli, M. F., Abdullah, A. M. and Narany, T. S.
(2014). Statistical Approach in Determining the Spatial Changes of Surface Water Quality at the Upper Course
of Kano River, Nigeria. Water Quality, Exposure and Health 6(3): 127-142.
Department of Environment Malaysia (DOE) (2009) Malaysia Environmental Quality Report, Ministryof
Science, Technology and Environment, Kuala Lumpur.
Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical
techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software 22(4): 464-475.
Fan, X., Cui, B., Zhao, H., Zhang, Z. and Zhang, H. (2010). Assessment of river water quality in Pearl River
Delta using multivariate statistical techniques. Procedia Environmental Sciences 2: 1220-1234.
Tobiszewski, M., Tsakovski, S., Simeonov, V. and Namie$nik, J. (2010). Surface water quality assessment by
the use of combination of multivariate statistical classification and expert information. Chemosphere 80(7):
740-746.

1029



Ahmad Isiyaka et al: ANALYSIS OF SURFACE WATER POLLUTION IN THE KINTA RIVER USING

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

3L

32.

33.

34.

35.

MULTIVARIATE TECHNIQUE

Al-Odaini, N. A., Zakaria, M. P., Zali, M. A., Juahir, H., Yaziz, M. |. and Surif, S. (2012). Application of
chemometrics in understanding the spatial distribution of human pharmaceuticals in surface water.
Environmental Monitoring and Assessment 184(11): 6735-6748.

Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. T., Armi, A. M., Toriman, M. E. and Mokhtar, M. (2011).
Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques.
Environmental Monitoring and Assessment 173(1-4): 625-641.

Deepulal, P. M., Sujatha, C. H. and George, R. (2012). Chemometric study on the trace metal accumulation in
the sediments of the Cochin Estuary—Southwest coast of India. Environmental Monitoring and Assessment
184(10): 6261-6279.

Wahid, N. B. A, Latif, M. T. and Suratman, S. (2013). Composition and source apportionment of surfactants in
atmospheric aerosols of urban and semi-urban areas in Malaysia. Chemosphere 91(11): 1508-1516.

Aris, A. Z., Praveena, S. M., Isa, N. M., Lim, W.Y., Juahir, H., Yusoff, M. K. and Mustapha, A. (2013).
Application of environmetricmethods to surface water quality assessment of Langkawi Geopark (Malaysia).
Environmental Forensics 14(3): 230-239.

Oyeyiola, A. O., Davidson, C. M., Olayinka, K. O., Oluseyi, T. O. and Alo, B. I. (2013). Multivariate analysis
of potentially toxic metals in sediments of a tropical coastal lagoon. Environmental Monitoring and Assessment
185(3): 2167-2177.

Isiyaka, H., Juahir, H., Toriman, M. E., Gasim, B. M., Azid, A., Amri, M. K., Ibrahim, A., Usman, U. N., Rano,
A. R. A. and Garba, M. A. (2014). Spatial Assessment of Air Pollution Index Using Environ Metric Modeling
Techniques. Advances in Environmental Biology 8(24): 244-256.

Pati, S., Dash, M. K., Mukherjee, C. K., Dash, B. and Pokhrel, S. (2014). Assessment of water quality using
multivariate statistical techniques in the coastal region of Visakhapatnam, India. Environmental Monitoring and
Assessment 186(10): 6385-6402.

Latif, M. T., Dominick, D., Ahamad, F., Khan, M. F., Juneng, L., Hamzah, F. M. and Nadzir, M. S. M. (2014).
Long term assessment of air quality from a background station on the Malaysian Peninsula. Science of The
Total Environment 482: 336-348.

Mustaffa, N. I. H., Latif, M. T., Ali, M. M. and Khan, M. F. (2014). Source apportionment of surfactants in
marine aerosols at different locations along the Malacca Straits. Environmental Science and Pollution Research
21(10): 6590-6602.

Jaafar, S. A,, Latif, M. T., Chian, C. W., Han, W. S., Wahid, N. B. A., Razak, I. S., Khan, M. F. and Tahir, N.
M. (2014). Surfactants in the sea-surface microlayer and atmospheric aerosol around the southern region of
Peninsular Malaysia. Marine Pollution Bulletin 84(1): 35-43.

Ghani, A., Zakaria, N. A., Kiat, C.C., Ariffin, J., Abu Hasan, Z., Abdul Gaffar, A. B., 2007. Revised equations
for manning’s coefficient for sand-bed rivers. International Journal of River Basin Management 5 (4): 329—
346.

Zali, M. A., Retham, A., Juahir, H., Zain, S. M., Kasim, M. F., Abdullah, B. and Saadudin, S. B. (2011).
Sensitivity analysis for water quality index (WQI) prediction for Kinta River, Malaysia. World Applied
Sciences Journal: 60 — 65.

Lau, J., Hung, W.T. and Cheung, C.S. (2009). Interpretation of air quality in relation to monitoring station’s
surrounding. Atmospheric Environmetric 43: 769-777.

Singh, K. P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of
spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research 38(18):
3980-3992.

Farmaki, E. G., Thomaidis, N. S., Simeonov, V. and Efstathiou, C. E. (2012). A comparative chemometric
study for water quality expertise of the Athenian water reservoirs. Environmental Monitoring and Assessment
184(12): 7635-7652.

Azid, A, Juahir, H., Toriman, M. E., Kamarudin, M. K. A., Saudi, A. S. M., Hasnam, C. N. C. and Yamin, M.
(2014). Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural
Network Techniques: a Case Study in Malaysia. Water, Air, & Soil Pollution 225(8): 2063 — 2077.

Zhang, Q., Li, Z.,, Zeng, G, Li, J., Fang, Y., Yuan, Q. and Ye, F. (2009). Assessment of surface water quality
using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China.
Environmental Monitoring and Assessment 152(1-4): 123-131.

1030



36.

37.

38.
39.
40.
41.

42,

43.

44,

45,

46.

47.

48.

49,

50.

51.
52.

53.

54.

Malaysian Journal of Analytical Sciences, Vol 19 No 5 (2015): 1019 - 1031

Brumelis, G., Lapiga, L., Nikodemus, O. and Tabors, G. (2000). Use of an artificial model of monitoring data
to aid interpretation of principal component analysis. Environmental Modelling & Software 15(8): 755-763.
Love, D., Hallbauer, D., Amos, A. and Hranova, R. (2004). Factor analysis as a tool in groundwater quality
management: two southern African case studies. Physics and Chemistry of the Earth, Parts A/B/C 29(15):
1135-1143.

Liu, C.W., Lin, K. H. and Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater
quality in a black foot disease area in Taiwan. Science of Total Environment 313: 77-89.

Chatterjee, S. and Price, B. (1999) Regression Analysis by Example. third ed. Wiley, Chichester.

Petrie, A. and Sabin, C. (2000). Medical Statistics at a Glance. Blackwell Science, Oxford.

Kovac-Andri¢, E., Brana, J. and Gvozdi¢, V. (2009). Impact of meteorological factors on ozone concentrations
modelled by time series analysis and multivariate statistical methods. Ecological Informatics 4(2): 117-122.
Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H. and Ramli, M. F. (2012). Artificial neural network
modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors.
Marine Pollution Bulletin 64(11): 2409-2420.

Pastor-Barcenas, O., Soria-Olivas, E., Martin-Guerrero, J. D., Camps-Valls, G., Carrasco-Rodriguez, J. L. and
del Valle-Tascén, S. (2005). Unbiased sensitivity analysis and pruning techniques in neural networks for
surface ozone modelling. Ecological Modelling 182(2): 149-158.

Napacho, Z. A. and Manyele, S. V. (2010). Quality assessment of drinking water in Temeke District (part 11):
Characterization of chemical parameters. African Journal of Environmental Science and Technology 4(11):
775-789.

Kanmani, S. and Gandhimathi, R. (2013). Investigation of physicochemical characteristics and heavy metal
distribution profile in groundwater system around the open dump site. Applied Water Science 3(2): 387-399.
WHO. (2011). Hardness in drinking water: background document for preparation of WHO guidelines for
drinking water quality. World Health Organization, Geneva.

Busse, M. (2013). Sign and symptoms of too much magnesium. http:// www.livestrong.com/article/379016-
signs-and-symptoms-of-toomuch- magnesium

Seth, R., Mohan, M., Dobhal, R., Gupta, V. K., Singh, P., Singh, R. and Gupta, S. (2014). Application of
Chemometric Techniques in the Assessment of Groundwater Quality of Udham Singh Nagar, Uttarakhand,
India. Water Quality, Exposure and Health 6(4): 199-216.

Chen, H., Teng, Y., Yue, W. and Song, L. (2013). Characterization and source apportionment of water
pollution in Jinjiang River, China. Environmental Monitoring and Assessment 185(11): 9639-9650.

Myers, S. A., Nield, A. and Myers, M. (2012). Zinc transporters, mechanisms of action and therapeutic utility:
implications for type 2 diabetes mellitus. Journal of Nutrition and Metabolism: 1-14.

Minnesota Pollution Control Agency. (2007). Phosphorus: Sources, Forms, Impact on Water Quality

Kumar, A., Bisht, B. S., Joshi, V. D., Singh, A. K. and Talwar, A. (2010). Physical, chemical and
bacteriological study of water from rivers of Uttarakhand. Journal of Human Ecology 32(3): 169-173.

Yang, L., Linyu, X. U. and Shun, L. (2009). Water quality analysis of the Songhua River Basin using
multivariate techniques. Journal of Water Resource and Protection 1(02): 110-121.

McFarland, A. M., & Hauck, S. L. (1999). Relating agricultural land uses to in-stream stormwater quality.
Journal of Environmental Quality 28(2): 836-844.

1031



