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Abstract 

This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most 

significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 

parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were 

spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters 

from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise 

discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76% in the total variance and attributes 

the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear 

regression and principal component scores indicates that 41% of the total pollution load is from rock weathering and untreated 

waste water, 26% from waste discharge, 24% from surface runoff and 7% from faecal waste. This study proposes a reduction in 

the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and 

multivariate technique can provide a simple representation of complex and dynamic water quality characteristics. 

 

Keywords: multivariate techniques, source apportionment, multiple linear regression, principal component analysis; Kinta river; 

water pollution 

 

Abstrak 

Kajian ini bertujuan untuk menyiasat variasi bagi ruang dalam mengenalpasti ciri-ciri di stesen pemantauan kualiti air, 

mengenalpasti parameter yang paling penting dan sumber utama kemungkinan terhadap pencemaran dan membahagi sumber 

kategori di Sungai Kinta. 31 parameter yang dikumpul dari lapan stesen pemantauan selama lapan tahun (2006-2013) telah 

digunapakai dalam kajian ini. Lapan stesen pengawasan telah telah dibahagikan kepada tiga kelompok bebas dalam bentuk 

dendrogram. Pengurangan mendadak bilangan parameter yang dipantau dari 31 parameter kepada lapan dan sembilan parameter 

penting (P <0.05) telah dicapai dengan menggunakan kaedah langkah demi langkah ke hadapan dan langkah demi langkah ke 

belakang melalui analisis pembezalayan (AP). Analisis komponen utama (AKU) menyumbang lebih daripada 76% dalam jumlah 

varians dan sifat-sifat punca pencemaran kepada proses antropogenik dan semula jadi. Pembahagian sumber menggunakan 

pelbagai regresi linear gabungan dan skor komponen utama menunjukkan bahawa 41% daripada jumlah beban pencemaran 

adalah daripada luluhawa batu dan air sisa yang tidak dirawat, 26% daripada pelepasan sisa, 24% daripada air larian permukaan 

dan 7% daripada sisa najis. Kajian ini mencadangkan pengurangan dalam bilangan stesen pemonitoran dan parameter untuk 

pengurusan kos yang berkesan dan masa dalam proses pemantauan dan teknik multivariat boleh menyediakan perwakilan yang 

mudah untuk ciri-ciri kualiti air yang kompleks dan dinamik. 

 

Kata kunci: teknik multivariate, sumber pembahagian; regresi linear, analisis komponen utama; Sungai Kinta; pencemaran air 
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Introduction 

Harnessing the availability of qualitative water and minimizing its vulnerability of been exposed to pollution is a 

challenging task for most societies in the developing nations. Water security and conservation requires the provision 

and protection of an acceptable quality and quantity of clean water [1].  Water quality is a term used to classify the 

status of the chemical, physical and biological characteristics of water based on its uses [2]. Nevertheless, the 

degeneration of water quality affects the health status of local inhabitants, biodiversity and the ecosystem balance in 

general [3,4]. 

 

River basin serves as the major source of water resources for domestic, agricultural practices, efficient inland 

transport system and industrial use [5,6]. Even though it is a renewable resource, little effort has been channeled 

towards its conservation and pollution risk assessment [7]. A river basin is an interconnected system of main river 

course and its tributaries [5]. River water quality can easily be degraded by pollutants induced by anthropogenic and 

natural processes [8]. This is because most fresh waters are converted to the endpoint of effluent discharge from 

industrial and domestic sewage [9]. Whatever the case, the rapid economic development, change in land use pattern 

to industrial, agricultural practices and concentration of settlement along the river course makes river basin 

susceptible to pollution [10,11,12]. A report by The Environmental Protection Agency (EPA) indicates that about 

one-third of the global surface water are unsafe for numerous uses and pose a serious threat to the general wellbeing 

of man and his environment. This assertion has created awareness on ensuring global water quality [13]. Under the 

8
th

 and 9
th

 Malaysia plan, several efforts have been made since 2001 to assess the rate at which water is been 

polluted [14]. 

 

However, an effective management and understanding of the chemical, biological and hydro-morphological pattern 

of river requires a fundamental application of robust statistical technique [15] for efficient pollution control and 

water quality management [16]. In order to understand the economic, environmental and social impact of water 

pollution, it is imperative to model the major possible sources and percentage contribution of water pollutants [17]. 

The application of pattern recognition and environmetric modelling techniques (multivariate statistics) is a 

sophisticated method for understanding water quality characteristics [18]. This technique have been applied by 

[4,8,9,18 – 28] to model different environmental issues. In this study, multivariate techniques such as CA, DA, PCA 

and MLR were used to model the complex and dynamic characterisation in the level of pollution in the Kinta River. 

CA was applied as an unsupervised pattern recognition technique in order to classify the water quality monitoring 

sites into interrelated groups. The most discriminating parameters with a drastic reduction in the number of 

significant variables were identified using DA. The sources of pollution were identified using PCA. The source 

category apportionment was modelled using MLR.  

 

The objectives of this study are; to determine the spatial characteristics in the similarities of water quality 

monitoring processes in the Kinta River; to identify the most statistical significant parameters and possible sources 

of water pollution; and to apportion the mass source contribution for each source category within the study area.  

 

Materials and Methods 

Study Area 

Kinta River is located in Perak which is the second largest state in Malaysia in terms of land mass (21,006 km
2
). 

Ipoh is the capital of Perak situated in the Kinta Valley [29]. The River is divided into upstream, middle stream and 

downstream with eight water quality monitoring sites covering the entire river network pattern. The upstream region 

is monitored by two stations (2PK22 and 2PK24), the middle course is assigned with three stations (2PK25, 2PK34, 

2PK59) and the downstream of the river is stationed with three monitoring sites (2PK19, 2PK33, 2PK60). Kinta 

River is a primary source of water for the inhabitants in Ipoh and Perak (Malaysia). It has 8 tributaries and gains its 

source from Gunung Korbu in Ulu Kinta Perak and stretches to about 2420km
2
. The capacity of the river was 

boosted by constructing a dam to supply about 639,000 m
3
 of water daily until 2020 [29]. The basic land use pattern 

within the catchment area ranges from residential, industrial, mining, oil and rubber palm plantations and logging 

[30]. The location of the study area is described in Table 1 and Figure 1.  
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Table 1.  Location of the study area based on the distance, altitude and coordinates 

Stations Distance (KM) Altitude Coordinates 

  From source Between stations   X Y 

      1599 518256.14 367777.98 

2PK22 155 15.5 264 516816.52 352365.48 

2PK24 224 6.9 50 512701.07 346869.20 

2PK25 339 11.5 34 502746.06 341721.84 

2PK59 375 3.6 28 499164.57 340907.99 

2PK34 439 6.4 23 492824.41 338308.55 

2PK33 576 13.7 11 479622.81 343084.89 

2PK60 648 7.2 9 472475.77 342025.07 

2PK19 77.1 12.3 7 462757.07 336011.65 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Description of the study area showing water quality monitoring sites in the Kinta River 

 

Figure 1. Description of the study area showing water quality monitoring sites in the Kinta River 

 

 

Data Collection 

Thirty one recent physicochemical water quality parameters monitored over a period of eight years (2006- 2013) 

were sourced from the Department of Environment Malaysia. The monitored parameters comprises of dissolved 

oxygen (DO); biochemical oxygen demand (BOD); chemical oxygen demand (COD); suspended solid (SS); pH; 

ammonia nitrogen (NH3-NL); NH4F,temperature  (°C),COND, salinity (SAL), turbidity (TUR), dissolved solid 
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(DS) , total solid (TS) nitrate nitrogen (NO3-N), chloride (Cl), phosphate phosphorous (PO4-P), arsenic (AS), 

mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), Zinc (Zn), calcium (Ca), iron (Fe), potassium (K), 

magnesium (Mg), sodium (Na), oil and grease (OG), methylene blue active substances (MBAS), E-coli and 

Coliform. 

 

Cluster Analysis (CA) 

CA is an unsupervised pattern recognition technique used to aggregate a similar group of entities that portrays a 

strong internal (within-class) homogeneity and strong external (between classes) heterogeneity [18]. These spatial 

classes of water quality sampling sites can be illustrated using a dendrogram that measures the degree of risk 

homogeneity through Ward's method and Euclidean distance [31]. A dendrogram also highlights a reduction in the 

dimensionality and complexity of the data sets. CA has the ability to extract the pattern of surface water quality that 

can be used as a guide for future sampling [32]. 

 

Discriminant Analysis (DA) 

DA is a supervised technique that can identify the most statistically significant parameters that best discriminate 

between natural occurring groups. It is used to construct new discriminate functions (DFs) from an existing group in 

order to explain the spatial characterization of surface water pollution [19,25]. DFs are calculated using equation 1: 

  F (Gi) = Ki + ∑j
n

=1 wij Pij                                             (1) 

where i = the number of group G; ki = constant inherent to each group; n = the number of parameters used to 

classify a set of data into a given group; wj = the weight coefficient assigned by discriminant function analysis 

(DFA) to a given parameter Pj. 

 

Principal Component Analysis (PCA) 

PCA is a powerful pattern recognition technique used in identifying the major possible sources of pollution 

[18,33,34]. It can be used to transform original observed variables to new orthogonal, uncorrelated variables called 

principal components (PCs) preserved as a linear combination of the original variables [20]. PCA reduces the 

dimensionality of large data sets without loss of the original variable [35]. 

z
ij = a

i1 x1 j + a
i2 x2 j 

+ .... + a
im xmj                                                                                                         (2) 

where  z is the component score,  a is the component  loading,  x is the measured value of the variable, i is 

the component number, j is the sample number, and m is the total number of variables. 

 

Furthermore, the varimax rotation of the PCs generated by PCA with eigenvalues greater than one is imperative to 

simplify its complexity for proper interpretation [19]. The varimax rotation is used to obtain new set of variables 

called varimax factors (VFs) [36,37] using factor analysis method (FA). FA can extract variables with strong 

positive loading that can account for high variability. According to [38] the strength of a factor loading is classified 

into strong (˃ 0.75), moderate (0.75-0.50) and weak (0.50-0.30). FA is calculated using equation 3: 

             z
ij = a f 1 f1i + a f 2 f21 + .... + a fm  fmi  + e fi                                                                                      (3) 

where  z is the  measured value  of  a  variable,  a is the  factor  loading,   f  is the  factor  score,  e is the  

residual  term  accounting for  errors  or  other sources  of variation, i is the  sample  number, j is the variable  

number, and m is the total number of factors. 

 

Multiple Linear Regression Model (MLR) 

MLR is a statistical technique that is used to predict the variability that exists between the dependent and 

independent variable [20,27,39,40]. Thus, the regress model can be represented as [41].  

Yi = βo + β1xIi + ..............+ βkxki  + ԑi  Eq                                                                                          (4) 

where i = 1 ....... n, β0, β1 and βk are regression coefficient, x1 and xk are independent variables and ԑ is error 

associated with the regression. 
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However, the percentage mass contribution of each identified possible source category was modelled using a 

combined principal component scores (PCS) after varimax rotation and MLR. The leave-one-out cross-validation 

technique was introduced to the model in order to examine the response in the network error if an input variable is 

removed at a time [42]. However, the deterioration in the network performance if one principal component score is 

eliminated determines the efficacy and significance of the variable in the overall network performance [43]. 

Invariably, the coefficient of determination “R
2
”, adjusted coefficient of determination “Adjusted R

2
” and Root 

mean square error “RMSE” were used to test the goodness of fit in the model performance [39,40]. 

 

Results and Discussion 

Descriptive statistics 

The descriptive statistics of the observed parameters summarizes the entire data sets for a better in order to simplify 

the observations. However, Table 2 below comprises of the total number of observations in the data set, the 

minimum and maximum values, media, mean, variance and standard deviation. 

 

 

Table 2.  Summary statistics of the observed parameters from 2006-2013 

Parameters Observations Minimum     Maximum           Mean Std. deviation 

DO 198 0.280 9.440 4.923 2.054 

BOD 198 1.000 54.000 4.227 4.445 

COD 198 3.000 108.000 23.682 14.781 

SS 198 0.500 1340.000 100.841 141.249 

pH 198 4.540 8.290 7.020 0.462 

NH3-NL 198 0.005 3.940 0.343 0.591 

NH4F 198 0.005 2.640 0.446 0.326 

TEMP °C 198 23.480 32.930 27.894 1.821 

COND 198 6.000 327.000 118.682 67.546 

SAL 198 0.010 0.150 0.055 0.032 

TUR 198 1.000 675.100 93.897 107.957 

DS 198 11.000 180.000 60.364 33.371 

TS 198 17.000 1402.000 161.882 143.920 

NO3 198 0.005 5.580 0.584 0.612 

Cl 198 0.500 25.000 6.306 4.834 

PO4 198 0.005 0.400 0.058 0.069 

As 198 0.001 0.049 0.010 0.008 

Hg 198 0.000 0.000 0.000 0.000 

Cd 198 0.001 0.001 0.001 0.000 

Cr 198 0.001 0.023 0.003 0.005 

Pb 198 0.005 0.005 0.005 0.000 

Zn 198 0.005 0.090 0.022 0.019 

Ca 198 0.380 37.200 12.587 7.739 

Fe 198 0.005 2.050 0.194 0.242 

K 198 0.050 13.400 3.152 1.997 

Mg 198 0.050 7.500 1.821 1.035 

Na 198 0.050 23.100 5.677 3.567 

OG 198 0.500 2.000 0.540 0.184 

MBAS 198 0.025 0.025 0.025 0.000 

E-coli 198 96.000 500000.000 29371.281 54546.213 

Coliform 198 4100.000 1700000.000 175869.697 248608.836 
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Spatial Classification in The Similarities of Water Quality Monitoring Sites 

The eight water quality monitoring sites were unsupervisedly and spatially classified based on their level of 

similarities and differences in the characteristics of pollutant concentration in the study area. The resultant output 

gave a dendrogram comprising of three distinct independent clusters as displayed in Figure 2. 

 

Cluster 1 is classified as a low pollution area (LPA) comprising of two clusters (2pk33 and 2pk22) located in both 

the upper course and lower course of the Kinta River. The two stations have a strong identity in terms of their 

similarities in the level of pollution. Cluster 2 comprises an integration of three water quality monitoring sites 

(2pk60, 2pk19 and 2pk24) with a strong similarities in their pollution level. This cluster represents a moderate 

pollution area (MPA). Two stations 2pk60 and 2pk19 are located in the lower course of the River while 2pk24 is 

situated at the upper course. The third cluster (2pk59, 2pk34 and 2pk25) is classified as the high pollution area 

(HPA). 

However, from the dendrogram in Figure 2 it is crystal clear that one station in each cluster can give a relative 

spatial representation of the water quality monitoring processes of the Kinta River. This reveal the redundancy 

nature of some monitoring sites that in turn increase cost of equipment installation, cost of labour and time wastage. 

Based on the findings, it is advisable to reduce and relocate station 2pk33, 2pk60 and 2pk24 as well as 2pk25 and 

2pk34 to other Rivers that have insufficient monitoring equipment since 2pk22, 2pk59 and 2pk19 in the three 

clusters represent the upper, middle and lower courses of the Kinta River. This action will not only reduce the 

overhead cost but also time management during the monitoring processes. 

 

 

 

Figure 2.  Dendrogram of spatial similarities in the monitoring sites 

 

 

Spatial Identification of the Most Discriminating Parameters 

The 36 water quality parameters monitored in the Kinta River represents a complex relationship that makes it 

tedious to pinpoint the most discriminating parameters affecting the water quality. Based on the clusters developed 

by HACA, the most significant parameters were determined using standard mode, forward stepwise and backward 

stepwise DA. To achieve this all the observed parameters were introduced as the independent variables while the 

three clusters were used as the dependent variables. The result for standard DA gave a reduction in the number of 

observations indicating that only 15 parameters (P˂0.0001) discriminate best with a strong assignation of 87.37% in 

the undimensional test of equality of the mean of class. Using the forward stepwise DA, only 8 parameters 

discriminate best with a P-value ˂0.0001 and correct assignation of 84.34%. This indicates a significant decrease in 

the number of observed parameters.  Backward stepwise DA gave a correct assignation of 86.87% showing that 

only 9 parameters discriminate best with a p-value ˂0.0001. 
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Identification of Major Pollution Sources in The Kinta River 

The compositional pattern in the characteristics of the examined parameters and the major possible sources of 

pollution were identified using PCA/FA. Nine varimax factors rotated to an eigenvalue greater than one (˃1) were 

obtained with a cumulative variance greater than 76% for the entire factors. In order to identify the source of 

pollution only factors with strong loading (˃ 0.75) capable of explaining the variation in the water quality pattern 

were selected for interpretation as highlighted in Table 3 and Figure 3. Furthermore, Figure 3b describes the scree 

plot diagram where the cut-off points for strong factors with eigenvalue greater than one are selected for 

interpretation.  

 

Table 3.  Identification of the most discriminating parameters based on clusters 

Sampling Sites  Regions   

  Cluster 1 Cluster 2 Cluster 3 % correct 

Standard mode 15 parameters     

Cluster 1 47 6 1 87.04% 

Cluster 2 6 64 2 88.89% 

Cluster 3 0 10 62 86.11% 

Total 53 80 65 87.37% 

Forward stepwise  8 parameters     

Cluster 1 47 6 1 87.04% 

Cluster 2 8 60 4 83.33% 

Cluster 3 0 12 60 83.33% 

Total 55 78 65 84.34% 

Backward stepwise 9  parameters     

Cluster 1 47 7 0 87.04% 

Cluster 2 7 63 2 87.50% 

Cluster 3 0 10 62 86.11% 

Total 54 80 64 86.87% 

 

 

 
 

Figure 3.  (a) PCA loading and (b) scree plot diagram after varimax rotation 
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Table 4.  Factor loading after varimax rotation  

Variables VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 VF9 

DO -0.612 -0.207 -0.224 0.004 0.227 0.226 -0.064 0.088 -0.166 

BOD 0.039 0.095 0.173 0.017 0.090 -0.050 0.863 -0.097 0.110 

COD 0.202 0.198 0.034 0.123 -0.221 0.094 0.816 0.014 -0.093 

SS -0.063 0.977 0.009 0.001 -0.026 -0.031 0.071 -0.016 -0.002 

pH 0.070 -0.061 0.084 -0.085 0.014 0.869 -0.001 -0.019 0.113 

NH3-NL 0.538 0.006 -0.166 -0.063 0.465 0.220 0.180 0.167 -0.103 

NH4F 0.386 -0.022 -0.162 -0.059 0.405 -0.132 0.142 0.269 -0.153 

TEMP °C 0.566 -0.188 0.031 -0.084 -0.137 -0.281 -0.123 -0.099 0.391 

COND 0.846 -0.016 0.186 -0.103 0.035 -0.087 -0.001 0.077 0.217 

SAL 0.848 -0.002 0.185 -0.119 0.050 -0.071 0.016 0.080 0.214 

TUR -0.129 0.944 0.107 -0.024 -0.054 0.014 0.047 -0.028 -0.006 

DS 0.931 0.023 0.020 0.007 0.068 0.010 0.097 0.047 0.103 

TS 0.154 0.962 0.018 0.013 0.004 -0.025 0.087 -0.005 0.030 

NO3 0.185 0.053 -0.191 0.055 0.088 0.199 0.058 -0.020 0.772 

Cl 0.829 -0.035 0.079 0.038 0.124 0.016 0.057 -0.031 -0.120 

PO4 0.324 -0.124 0.117 0.110 0.708 0.126 -0.126 -0.078 0.165 

As 0.724 -0.079 0.210 0.111 -0.075 -0.056 -0.034 0.096 0.125 

Hg -0.072 -0.058 0.035 -0.028 -0.032 0.004 -0.083 0.872 -0.012 

Cd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Cr 0.387 0.040 -0.065 0.189 -0.593 0.452 0.173 0.095 0.030 

Pb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Zn 0.071 0.063 -0.130 0.778 -0.090 -0.078 0.212 0.173 0.267 

Ca 0.925 0.075 0.055 -0.096 -0.006 0.068 0.024 -0.118 0.018 

Fe -0.197 -0.058 0.064 0.840 0.057 -0.006 -0.031 -0.172 -0.163 

K 0.688 -0.102 0.179 0.220 0.048 0.169 0.215 -0.173 -0.260 

Mg 0.864 -0.010 -0.044 -0.005 -0.090 0.076 0.024 -0.131 0.024 

Na 0.868 -0.047 -0.046 -0.001 0.138 0.219 0.100 0.050 -0.171 

OG -0.046 -0.017 0.683 -0.045 -0.085 0.206 0.025 0.048 0.044 

MBAS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

E-coli 0.282 0.072 0.832 0.007 0.056 0.092 0.127 0.007 -0.066 

Coliform 0.213 0.159 0.775 -0.027 0.051 -0.140 0.109 -0.003 -0.146 

Eigenvalue 8.396 3.314 1.988 1.849 1.427 1.374 1.130 1.033 1.004 

Variability 

(%) 29.985 11.834 7.098 6.604 5.095 4.906 4.035 3.690 3.586 

Cumulative 

(%) 29.985 41.819 48.917 55.521 60.617 65.523 69.558 73.248 76.835 
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The first varimax factor (VF1) explains 29.9% of the total variance with a strong positive loading for COND 

(0.846), SAL (0.848), DS (0.931), Cl (0.829), Ca (0.925), Mg (0.864) and Na (0.868). The composition of these 

factors is characterised with chemical parameters rich in mineral components from untreated wastewater discharge 

and weathering of existing parent rock [8,19]. Ca, Na, Mg affect the level of water hardness [19] thereby 

accelerating the cases of kidney stones and heart diseases [44]. COD SAL and DS allow high electrical flow due to 

high concentration of ions.  Conductivity ions originate from dissolve salt and inorganic materials such as chloride, 

sulphides, alkalis and carbonate compounds. However, water with high salinity is likely to be conductive in nature. 

Cl encourages corrosion when in contact with metal ions thereby produce high concentration of metal in drinking 

water with a salty taste [45]. Ca occurs naturally in water since its primary origin is from parent rock. The high 

concentration (Ca) can lead to colorectal cancer, obesity, kidney stone, stroke and hypertension [46]. The strong 

loading for Mg can encourage low blood pressure, slow breathing, unconsciousness and death [47]. 

 

VF2 have strong positive loading for SS (0.977), TUR (0.944), and TS (0.962) that explains 11.8% of the total 

variance in the data sets. The composition pattern in the source of these pollutants originates from surface runoff in 

the solid form from field with high concentration of soil and waste disposal activities [19]. High TUR reflect the 

presence of silt, clay, organic matter and other microorganism [48] capable of altering the level of water clarity that 

limits light penetration as well as affect aquatic life. TUR can also encourage the existence of virus and bacteria 

parasites that can cause diarrhoea and headache [48].  

 

VF3 have strong positive loading for E-coli (0.832) and coliform (0.775) explaining 7.1% of the total variance. The 

source of these pollutants is from faecal waste. VF4 exhibit a strong loading for Zn (0.778) and Fe (0.840) that 

accounts for 6.6% of the total variance in the datasets. These pollutants are likely to originate from industrial waste 

water discharge triggered by anthropogenic point source activities [49]. Metals originating from the discharged 

industrial waste and weathering of parent rocks are the major sources of Fe [48]. The presence of Zn in water within 

the permissible limit provides organisms the basic for physiological and metabolic processes. Its excesses affect 

human health [50].  

VF6 represent a strong positive loading (0.869) for pH. High concentration of pH denotes the presence of alkaline 

that originates from erosion of river banks and weathering of existing parent materials rich in carbonates and 

bicarbonates limestone rocks. The presence of alkaline encourages the growth of algae, changes the water 

appearance to a greener colour [51,52] 

 

VF7 accounts for 4% of the total variance with a strong positive loading for BOD (0.863) and COD (0.816). These 

factors represent organic pollutants from point sources such as waste water discharge from treatment plants, 

domestic waste water and discharge from industrial effluent [4]. VF8 (Hg, 0.872) represent pollution discharge from 

industrial and mining activities [53] explaining 3.7% of the total variance in the data sets. 

 

VF9 have a strong positive loading for NO3 that account for 3.6% of the total variance in the data sets. The source 

of this pollutant comes from agricultural related activities such as fertilizer application, pesticides and organic 

manure [54]. Application of nitrogen fertilizer by farmers to boast farm yield may undergo nitrification processes 

[49]. 

 

Source Apportionment using A Combined PCS/MLR 

The mass contribution of each source category based on the leave-one-out cross-validation method is displayed in 

Figure 4. Each category comprises a combination of factors that explains the source apportionment of pollution in 

the study area.  

 

Based on the findings, rock weathering and untreated waste water from point source and non-point sources 

contributes about 41% of the total pollution load in the Kinta River. The composition of these parameters affects the 

mineralogical content of the river. Point source pollution of waste discharged from industrial effluent, treatment 

plants and domestic sewage contributes 26% of the pollution load. The next most significant source apportioned 

accounted for 24% explaining an influence from natural processes triggered by surface runoff of soil and waste 
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materials. Faecal waste contributes 7% in the total pollution load, followed by 1% from erosion and weathering 

processes. The remaining category ranges from 0.1% to 0.2%. 

 

This method reveals the most significant variables that need to be retained and those that are redundant during 

subsequent monitoring processes. It also provides a simple explanation in the source classification of pollution in 

the Kinta River that can be used as a base by government and other stakeholders to develop policies and strategies 

to limit pollutant discharge and improve water quality for numerous uses. 

 

 

           

Figure 4.  Pie chart for mass source contribution of water pollution 

 

 

Conclusion 

In this study, a reduction in the number of monitoring sites and observed parameters in the Kinta River were 

proposed based on the multivariate findings using HACA, DA, PCA and MLR. Spatial classification of the eight 

water quality monitoring station into three clusters was achieved using HACA. This classification reveals the level 

of similarities and redundancy in the characteristics of the monitoring processes. However, the findings for HACA 

indicates that three stations (2Pk22, 2Pk59 and 2Pk19) located in the upstream, middle and lower course can give a 

relative spatial representation of the water quality monitoring processes in the Kinta River. This will reduce cost and 

time of monitoring unnecessary sites. The 31 physicochemical parameters were also reduced to 8 most significant 

parameters with a P-value ˂0.0001 and a correct assignation of 84.34% using the forward stepwise DA. In the 

subsequent monitoring processes, it is suggested that these 8 parameters can provide a spatial representation of the 

water quality status in the Kinta River. This will also reduce the cost and time spent in observing the remaining 23 

parameters. The result for PCA revealed that anthropogenic activities (industrial, treatment plants and domestic 

waste discharge, mining activities, fertilizer and pesticides) and natural processes (weathering of parent rock, 

surface runoff and erosion of river banks) constitutes the major possible sources of pollution in the study area. 

Furthermore, the mass source category apportionment was achieved using a combined MLR and principal 

component scores. In this regard, rock weathering and untreated waste water contributes 41% of the total pollution 

load, 26% by point source waste discharge, 24% by surface runoff, 7% faecal waste, erosion and weathering 1% and 

the remaining ranges from 0.1-0.2%. Even though water quality parameters exhibit a complex characteristic, 

multivariate technique can provide a simple explanation for a proper policy implementation by government and 

stakeholders involve in water quality management. 
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