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Abstract

This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76% in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41% of the total pollution load is from rock weathering and untreated waste water, 26% from waste discharge, 24% from surface runoff and 7% from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics.
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Abstrak

Kajian ini bertujuan untuk menyiasat variasi bagi ruang dalam mengenalpasti ciri-ciri di stesen pemantauan kualiti air, mengenalpasti parameter yang paling penting dan sumber utama kemungkinan terhadap pencemaran dan membahagi sumber kategori di Sungai Kinta. 31 parameter yang dikumpul dari lapan stesen pemantauan selama lapan tahun (2006-2013) telah digunapakai dalam kajian ini. Lapan stesen pengawasan telah telah dibahagikan kepada tiga kelompok bebas dalam bentuk dendrogram. Pengurangan mendadak bilangan parameter yang dipantau dari 31 parameter kepada lapan dan sembilan parameter penting (P <0.05) telah dicapai dengan menggunakan kaedah langkah demi langkah ke hadapan dan langkah demi langkah ke belakang melalui analisis pembezalayan (AP). Analisis komponen utama (AKU) menyumbang lebih daripada 76% dalam jumlah varians dan sifat-sifat punca pencemaran kepada proses antropogenik dan semula jadi. Pembahagian sumber menggunakan pelbagai regresi linear gabungan dan skor komponen utama menunjukkan bahawa 41% daripada jumlah beban pencemaran adalah daripada luluhawa batu dan air sisa yang tidak dirawat, 26% daripada pelepasan sisa, 24% daripada air larian permukaan dan 7% daripada sisa najis. Kajian ini mencadangkan pengurangan dalam bilangan stesen pemonitoran dan parameter untuk pengurusan kos yang berkesan dan masa dalam proses pemantauan dan teknik multivariat boleh menyediakan perwakilan yang mudah untuk ciri-ciri kualiti air yang kompleks dan dinamik.

Kata kunci: Teknik multivariate, sumber pembahagian; regresi linear, analisis komponen utama; Sungai Kinta; pencemaran air.

Introduction

Harnessing the availability of qualitative water and minimizing its vulnerability of been exposed to pollution is a challenging task for most societies in the developing nations. Water security and conservation requires the provision and protection of an acceptable quality and quantity of clean water [1].  Water quality is a term used to classify the status of the chemical, physical and biological characteristics of water based on its uses [2]. Nevertheless, the degeneration of water quality affects the health status of local inhabitants, biodiversity and the ecosystem balance in general [3,4].

River basin serves as the major source of water resources for domestic, agricultural practices, efficient inland transport system and industrial use [5,6]. Even though it is a renewable resource, little effort has been channeled towards its conservation and pollution risk assessment [7]. A river basin is an interconnected system of main river course and its tributaries [5]. River water quality can easily be degraded by pollutants induced by anthropogenic and natural processes [8]. This is because most fresh waters are converted to the endpoint of effluent discharge from industrial and domestic sewage [9]. Whatever the case, the rapid economic development, change in land use pattern to industrial, agricultural practices and concentration of settlement along the river course makes river basin susceptible to pollution [10,11,12]. A report by The Environmental Protection Agency (EPA) indicates that about one-third of the global surface water are unsafe for numerous uses and pose a serious threat to the general wellbeing of man and his environment. This assertion has created awareness on ensuring global water quality [13]. Under the 8th and 9th Malaysia plan, several efforts have been made since 2001 to assess the rate at which water is been polluted [14].

However, an effective management and understanding of the chemical, biological and hydro-morphological pattern of river requires a fundamental application of robust statistical technique [15] for efficient pollution control and water quality management [16]. In order to understand the economic, environmental and social impact of water pollution, it is imperative to model the major possible sources and percentage contribution of water pollutants [17]. The application of pattern recognition and environmetric modelling techniques (multivariate statistics) is a sophisticated method for understanding water quality characteristics [18]. This technique have been applied by [4,8,9,18 – 28] to model different environmental issues. In this study, multivariate techniques such as CA, DA, PCA and MLR were used to model the complex and dynamic characterisation in the level of pollution in the Kinta River. CA was applied as an unsupervised pattern recognition technique in order to classify the water quality monitoring sites into interrelated groups. The most discriminating parameters with a drastic reduction in the number of significant variables were identified using DA. The sources of pollution were identified using PCA. The source category apportionment was modelled using MLR. 
The objectives of this study are; to determine the spatial characteristics in the similarities of water quality monitoring processes in the Kinta River; to identify the most statistical significant parameters and possible sources of water pollution; and to apportion the mass source contribution for each source category within the study area. 

Materials and Methods

Study Area

Kinta River is located in Perak which is the second largest state in Malaysia in terms of land mass (21,006 km2). Ipoh is the capital of Perak situated in the Kinta Valley [29]. The River is divided into upstream, middle stream and downstream with eight water quality monitoring sites covering the entire river network pattern. The upstream region is monitored by two stations (2PK22 and 2PK24), the middle course is assigned with three stations (2PK25, 2PK34, 2PK59) and the downstream of the river is stationed with three monitoring sites (2PK19, 2PK33, 2PK60). Kinta River is a primary source of water for the inhabitants in Ipoh and Perak (Malaysia). It has 8 tributaries and gains its source from Gunung Korbu in Ulu Kinta Perak and stretches to about 2420km2. The capacity of the river was boosted by constructing a dam to supply about 639,000 m3 of water daily until 2020 [29]. The basic land use pattern within the catchment area ranges from residential, industrial, mining, oil and rubber palm plantations and logging [30]. The location of the study area is described in Table 1 and Figure 1. 
	Table 1 . Location of the study area based on the distance, altitude and coordinates


	Stations
	Distance (KM)
	   Altitude
	Coordinates

	 
	From source
	Between stations
	 
	           X
	        Y

	 
	 
	 
	1599
	518256.14
	367777.98

	2PK22
	155
	15.5
	264
	516816.52
	352365.48

	2PK24
	224
	6.9
	50
	512701.07
	346869.20

	2PK25
	339
	11.5
	34
	502746.06
	341721.84

	2PK59
	375
	3.6
	28
	499164.57
	340907.99

	2PK34
	439
	6.4
	23
	492824.41
	338308.55

	2PK33
	576
	13.7
	11
	479622.81
	343084.89

	2PK60
	648
	7.2
	9
	472475.77
	342025.07

	2PK19
	77.1
	12.3
	7
	462757.07
	336011.65
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Figure 1. Description of the study area showing water quality monitoring sites in the Kinta River

Data Collection
Thirty one recent physicochemical water quality parameters monitored over a period of eight years (2006- 2013) were sourced from the Department of Environment Malaysia. The monitored parameters comprises of dissolved oxygen (DO); biochemical oxygen demand (BOD); chemical oxygen demand (COD); suspended solid (SS); pH; ammonia nitrogen (NH3-NL); NH4F,temperature  (°C),COND, salinity (SAL), turbidity (TUR), dissolved solid (DS) , total solid (TS) nitrate nitrogen (NO3-N), chloride (Cl), phosphate phosphorous (PO4-P), arsenic (AS), mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), Zinc (Zn), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), sodium (Na), oil and grease (OG), methylene blue active substances (MBAS), E-coli and Coliform.
Cluster Analysis (CA)
CA is an unsupervised pattern recognition technique used to aggregate a similar group of entities that portrays a strong internal (within-class) homogeneity and strong external (between classes) heterogeneity [18]. These spatial classes of water quality sampling sites can be illustrated using a dendrogram that measures the degree of risk homogeneity through Ward's method and Euclidean distance [31]. A dendrogram also highlights a reduction in the dimensionality and complexity of the data sets. CA has the ability to extract the pattern of surface water quality that can be used as a guide for future sampling [32].
Discriminant Analysis (DA)

DA is a supervised technique that can identify the most statistically significant parameters that best discriminate between natural occurring groups. It is used to construct new discriminate functions (DFs) from an existing group in order to explain the spatial characterization of surface water pollution [19,25]. DFs are calculated using equation 1:

 
F (Gi) = Ki + ∑jn=1 wij Pij 






                               (1)

Where i = the number of group G; ki = constant inherent to each group; n = the number of parameters used to classify a set of data into a given group; wj = the weight coefficient assigned by discriminant function analysis (DFA) to a given parameter Pj.

Principal Component Analysis (PCA)

PCA is a powerful pattern recognition technique used in identifying the major possible sources of pollution [18,33,34]. It can be used to transform original observed variables to new orthogonal, uncorrelated variables called principal components (PCs) preserved as a linear combination of the original variables [20]. PCA reduces the dimensionality of large data sets without loss of the original variable [35].

zij = ai1 x1 j + ai2 x2 j + .... + aim xmj                                                                                                  (2)
where  z is the component score,  a is the component  loading,  x is the measured value of the variable, i is the component number, j is the sample number, and m is the total number of variables.
Furthermore, the varimax rotation of the PCs generated by PCA with eigenvalues greater than one is imperative to simplify its complexity for proper interpretation [19]. The varimax rotation is used to obtain new set of variables called varimax factors (VFs) [36,37] using factor analysis method (FA). FA can extract variables with strong positive loading that can account for high variability. According to [38] the strength of a factor loading is classified into strong (˃ 0.75), moderate (0.75-0.50) and weak (0.50-0.30). FA is calculated using equation 3:

             zij = a f 1 f1i + a f 2 f21 + .... + a fm  fmi  + e fi                                                                                (3)

where  z is the  measured value  of  a  variable,  a is the  factor  loading,   f  is the  factor  score,  e is the  residual  term  accounting for  errors  or  other sources  of variation, i is the  sample  number, j is the variable  number, and m is the total number of factors.

Multiple Linear Regression Model (MLR)

MLR is a statistical technique that is used to predict the variability that exists between the dependent and independent variable [20,27,39,40]. Thus, the regress model can be represented as [41]. 

Yi = βo + β1xIi + ..............+ βkxki  + ԑi  Eq                       
                                                           (4)
where i = 1 ....... n, β0, β1 and βk are regression coefficient, x1 and xk are independent variables and ԑ is error associated with the regression.

However, the percentage mass contribution of each identified possible source category was modelled using a combined principal component scores (PCS) after varimax rotation and MLR. The leave-one-out cross-validation technique was introduced to the model in order to examine the response in the network error if an input variable is removed at a time [42]. However, the deterioration in the network performance if one principal component score is eliminated determines the efficacy and significance of the variable in the overall network performance [43]. Invariably, the coefficient of determination “R2”, adjusted coefficient of determination “Adjusted R2” and Root mean square error “RMSE” were used to test the goodness of fit in the model performance [39,40].

Results and Discussion

Descriptive statistics

The descriptive statistics of the observed parameters summarizes the entire data sets for a better in order to simplify the observations. However, Table 2 below comprises of the total number of observations in the data set, the minimum and maximum values, media, mean, variance and standard deviation.

	Table 2. Summary statistics of the observed parameters from 2006-2013


	Parameters
	Observations
	Minimum
	    Maximum
	          Mean
	Std. deviation

	DO
	198
	0.280
	9.440
	4.923
	2.054

	BOD
	198
	1.000
	54.000
	4.227
	4.445

	COD
	198
	3.000
	108.000
	23.682
	14.781

	SS
	198
	0.500
	1340.000
	100.841
	141.249

	pH
	198
	4.540
	8.290
	7.020
	0.462

	NH3-NL
	198
	0.005
	3.940
	0.343
	0.591

	NH4F
	198
	0.005
	2.640
	0.446
	0.326

	TEMP °C
	198
	23.480
	32.930
	27.894
	1.821

	COND
	198
	6.000
	327.000
	118.682
	67.546

	SAL
	198
	0.010
	0.150
	0.055
	0.032

	TUR
	198
	1.000
	675.100
	93.897
	107.957

	DS
	198
	11.000
	180.000
	60.364
	33.371

	TS
	198
	17.000
	1402.000
	161.882
	143.920

	NO3
	198
	0.005
	5.580
	0.584
	0.612

	Cl
	198
	0.500
	25.000
	6.306
	4.834

	PO4
	198
	0.005
	0.400
	0.058
	0.069

	As
	198
	0.001
	0.049
	0.010
	0.008

	Hg
	198
	0.000
	0.000
	0.000
	0.000

	Cd
	198
	0.001
	0.001
	0.001
	0.000

	Cr
	198
	0.001
	0.023
	0.003
	0.005

	Pb
	198
	0.005
	0.005
	0.005
	0.000

	Zn
	198
	0.005
	0.090
	0.022
	0.019

	Ca
	198
	0.380
	37.200
	12.587
	7.739

	Fe
	198
	0.005
	2.050
	0.194
	0.242

	K
	198
	0.050
	13.400
	3.152
	1.997

	Mg
	198
	0.050
	7.500
	1.821
	1.035

	Na
	198
	0.050
	23.100
	5.677
	3.567

	OG
	198
	0.500
	2.000
	0.540
	0.184

	MBAS
	198
	0.025
	0.025
	0.025
	0.000

	E-coli
	198
	96.000
	500000.000
	29371.281
	54546.213

	Coliform
	198
	4100.000
	1700000.000
	175869.697
	248608.836


Spatial Classification in The Similarities of Water Quality Monitoring Sites
The eight water quality monitoring sites were unsupervisedly and spatially classified based on their level of similarities and differences in the characteristics of pollutant concentration in the study area. The resultant output gave a dendrogram comprising of three distinct independent clusters as displayed in Figure 2.

Cluster 1 is classified as a low pollution area (LPA) comprising of two clusters (2pk33 and 2pk22) located in both the upper course and lower course of the Kinta River. The two stations have a strong identity in terms of their similarities in the level of pollution. Cluster 2 comprises an integration of three water quality monitoring sites (2pk60, 2pk19 and 2pk24) with a strong similarities in their pollution level. This cluster represents a moderate pollution area (MPA). Two stations 2pk60 and 2pk19 are located in the lower course of the River while 2pk24 is situated at the upper course. The third cluster (2pk59, 2pk34 and 2pk25) is classified as the high pollution area (HPA).

However, from the dendrogram in Figure 2 it is crystal clear that one station in each cluster can give a relative spatial representation of the water quality monitoring processes of the Kinta River. This reveal the redundancy nature of some monitoring sites that in turn increase cost of equipment installation, cost of labour and time wastage. Based on the findings, it is advisable to reduce and relocate station 2pk33, 2pk60 and 2pk24 as well as 2pk25 and 2pk34 to other Rivers that have insufficient monitoring equipment since 2pk22, 2pk59 and 2pk19 in the three clusters represent the upper, middle and lower courses of the Kinta River. This action will not only reduce the overhead cost but also time management during the monitoring processes.
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Figure 2. Dendrogram of spatial similarities in the monitoring sites

Spatial Identification of the Most Discriminating Parameters
The 36 water quality parameters monitored in the Kinta River represents a complex relationship that makes it tedious to pinpoint the most discriminating parameters affecting the water quality. Based on the clusters developed by HACA, the most significant parameters were determined using standard mode, forward stepwise and backward stepwise DA. To achieve this all the observed parameters were introduced as the independent variables while the three clusters were used as the dependent variables. The result for standard DA gave a reduction in the number of observations indicating that only 15 parameters (P˂0.0001) discriminate best with a strong assignation of 87.37% in the undimensional test of equality of the mean of class. Using the forward stepwise DA, only 8 parameters discriminate best with a P-value ˂0.0001 and correct assignation of 84.34%. This indicates a significant decrease in the number of observed parameters.  Backward stepwise DA gave a correct assignation of 86.87% showing that only 9 parameters discriminate best with a p-value ˂0.0001.

Table 3 . Identification of the most discriminating parameters based on clusters
	Sampling Sites
	
	Regions
	
	

	 
	Cluster 1
	Cluster 2
	Cluster 3
	% correct

	Standard mode 15 parameters
	
	
	
	

	Cluster 1
	47
	6
	1
	87.04%

	Cluster 2
	6
	64
	2
	88.89%

	Cluster 3
	0
	10
	62
	86.11%

	Total
	53
	80
	65
	87.37%

	Forward stepwise  8 parameters
	
	
	
	

	Cluster 1
	47
	6
	1
	87.04%

	Cluster 2
	8
	60
	4
	83.33%

	Cluster 3
	0
	12
	60
	83.33%

	Total
	55
	78
	65
	84.34%

	Backward stepwise 9  parameters
	
	
	
	

	Cluster 1
	47
	7
	0
	87.04%

	Cluster 2
	7
	63
	2
	87.50%

	Cluster 3
	0
	10
	62
	86.11%

	Total
	54
	80
	64
	86.87%


Identification of Major Pollution Sources in The Kinta River

The compositional pattern in the characteristics of the examined parameters and the major possible sources of pollution were identified using PCA/FA. Nine varimax factors rotated to an eigenvalue greater than one (˃1) were obtained with a cumulative variance greater than 76% for the entire factors. In order to identify the source of pollution only factors with strong loading (˃ 0.75) capable of explaining the variation in the water quality pattern were selected for interpretation as highlighted in Table 3 and Figure 3. Furthermore, Figure 3b describes the scree plot diagram where the cut-off points for strong factors with eigenvalue greater than one are selected for interpretation. 

The first varimax factor (VF1) explains 29.9% of the total variance with a strong positive loading for COND (0.846), SAL (0.848), DS (0.931), Cl (0.829), Ca (0.925), Mg (0.864) and Na (0.868). The composition of these factors is characterised with chemical parameters rich in mineral components from untreated wastewater discharge and weathering of existing parent rock [8,19]. Ca, Na, Mg affect the level of water hardness [19] thereby accelerating the cases of kidney stones and heart diseases [44]. COD SAL and DS allow high electrical flow due to high concentration of ions.  Conductivity ions originate from dissolve salt and inorganic materials such as chloride, sulphides, alkalis and carbonate compounds. However, water with high salinity is likely to be conductive in nature. Cl encourages corrosion when in contact with metal ions thereby produce high concentration of metal in drinking water with a salty taste [45]. Ca occurs naturally in water since its primary origin is from parent rock. The high concentration (Ca) can lead to colorectal cancer, obesity, kidney stone, stroke and hypertension [46]. The strong loading for Mg can encourage low blood pressure, slow breathing, unconsciousness and death [47].
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Figure 3. (a) PCA loading and (b) scree plot diagram after varimax rotation

Table 3 . Factor loading after varimax rotation 
	Variables
	VF1
	VF2
	VF3
	VF4
	VF5
	VF6
	VF7
	VF8
	VF9

	DO
	-0.612
	-0.207
	-0.224
	0.004
	0.227
	0.226
	-0.064
	0.088
	-0.166

	BOD
	0.039
	0.095
	0.173
	0.017
	0.090
	-0.050
	0.863
	-0.097
	0.110

	COD
	0.202
	0.198
	0.034
	0.123
	-0.221
	0.094
	0.816
	0.014
	-0.093

	SS
	-0.063
	0.977
	0.009
	0.001
	-0.026
	-0.031
	0.071
	-0.016
	-0.002

	pH
	0.070
	-0.061
	0.084
	-0.085
	0.014
	0.869
	-0.001
	-0.019
	0.113

	NH3-NL
	0.538
	0.006
	-0.166
	-0.063
	0.465
	0.220
	0.180
	0.167
	-0.103

	NH4F
	0.386
	-0.022
	-0.162
	-0.059
	0.405
	-0.132
	0.142
	0.269
	-0.153

	TEMP °C
	0.566
	-0.188
	0.031
	-0.084
	-0.137
	-0.281
	-0.123
	-0.099
	0.391

	COND
	0.846
	-0.016
	0.186
	-0.103
	0.035
	-0.087
	-0.001
	0.077
	0.217

	SAL
	0.848
	-0.002
	0.185
	-0.119
	0.050
	-0.071
	0.016
	0.080
	0.214

	TUR
	-0.129
	0.944
	0.107
	-0.024
	-0.054
	0.014
	0.047
	-0.028
	-0.006

	DS
	0.931
	0.023
	0.020
	0.007
	0.068
	0.010
	0.097
	0.047
	0.103

	TS
	0.154
	0.962
	0.018
	0.013
	0.004
	-0.025
	0.087
	-0.005
	0.030

	NO3
	0.185
	0.053
	-0.191
	0.055
	0.088
	0.199
	0.058
	-0.020
	0.772

	Cl
	0.829
	-0.035
	0.079
	0.038
	0.124
	0.016
	0.057
	-0.031
	-0.120

	PO4
	0.324
	-0.124
	0.117
	0.110
	0.708
	0.126
	-0.126
	-0.078
	0.165

	As
	0.724
	-0.079
	0.210
	0.111
	-0.075
	-0.056
	-0.034
	0.096
	0.125

	Hg
	-0.072
	-0.058
	0.035
	-0.028
	-0.032
	0.004
	-0.083
	0.872
	-0.012

	Cd
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	Cr
	0.387
	0.040
	-0.065
	0.189
	-0.593
	0.452
	0.173
	0.095
	0.030

	Pb
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	Zn
	0.071
	0.063
	-0.130
	0.778
	-0.090
	-0.078
	0.212
	0.173
	0.267

	Ca
	0.925
	0.075
	0.055
	-0.096
	-0.006
	0.068
	0.024
	-0.118
	0.018

	Fe
	-0.197
	-0.058
	0.064
	0.840
	0.057
	-0.006
	-0.031
	-0.172
	-0.163

	K
	0.688
	-0.102
	0.179
	0.220
	0.048
	0.169
	0.215
	-0.173
	-0.260

	Mg
	0.864
	-0.010
	-0.044
	-0.005
	-0.090
	0.076
	0.024
	-0.131
	0.024

	Na
	0.868
	-0.047
	-0.046
	-0.001
	0.138
	0.219
	0.100
	0.050
	-0.171

	OG
	-0.046
	-0.017
	0.683
	-0.045
	-0.085
	0.206
	0.025
	0.048
	0.044

	MBAS
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000

	E-coli
	0.282
	0.072
	0.832
	0.007
	0.056
	0.092
	0.127
	0.007
	-0.066

	Coliform
	0.213
	0.159
	0.775
	-0.027
	0.051
	-0.140
	0.109
	-0.003
	-0.146

	Eigenvalue
	8.396
	3.314
	1.988
	1.849
	1.427
	1.374
	1.130
	1.033
	1.004

	Variability (%)
	29.985
	11.834
	7.098
	6.604
	5.095
	4.906
	4.035
	3.690
	3.586

	Cumulative (%)
	29.985
	41.819
	48.917
	55.521
	60.617
	65.523
	69.558
	73.248
	76.835


VF2 have strong positive loading for SS (0.977), TUR (0.944), and TS (0.962) that explains 11.8% of the total variance in the data sets. The composition pattern in the source of these pollutants originates from surface runoff in the solid form from field with high concentration of soil and waste disposal activities [19]. High TUR reflect the presence of silt, clay, organic matter and other microorganism [48] capable of altering the level of water clarity that limits light penetration as well as affect aquatic life. TUR can also encourage the existence of virus and bacteria parasites that can cause diarrhoea and headache [48]. 

VF3 have strong positive loading for E-coli (0.832) and coliform (0.775) explaining 7.1% of the total variance. The source of these pollutants is from faecal waste. VF4 exhibit a strong loading for Zn (0.778) and Fe (0.840) that accounts for 6.6% of the total variance in the datasets. These pollutants are likely to originate from industrial waste water discharge triggered by anthropogenic point source activities [49]. Metals originating from the discharged industrial waste and weathering of parent rocks are the major sources of Fe [48]. The presence of Zn in water within the permissible limit provides organisms the basic for physiological and metabolic processes. Its excesses affect human health [50]. 

VF6 represent a strong positive loading (0.869) for pH. High concentration of pH denotes the presence of alkaline that originates from erosion of river banks and weathering of existing parent materials rich in carbonates and bicarbonates limestone rocks. The presence of alkaline encourages the growth of algae, changes the water appearance to a greener colour [51,52]

VF7 accounts for 4% of the total variance with a strong positive loading for BOD (0.863) and COD (0.816). These factors represent organic pollutants from point sources such as waste water discharge from treatment plants, domestic waste water and discharge from industrial effluent [4]. VF8 (Hg, 0.872) represent pollution discharge from industrial and mining activities [53] explaining 3.7% of the total variance in the data sets.

VF9 have a strong positive loading for NO3 that account for 3.6% of the total variance in the data sets. The source of this pollutant comes from agricultural related activities such as fertilizer application, pesticides and organic manure [54]. Application of nitrogen fertilizer by farmers to boast farm yield may undergo nitrification processes [49].

Source Apportionment using A Combined PCS/MLR

The mass contribution of each source category based on the leave-one-out cross-validation method is displayed in Figure 4. Each category comprises a combination of factors that explains the source apportionment of pollution in the study area. 
               [image: image3.png]Source category apportionment

Poiat source Industrial gicultural non-

polluton (waste and Mining actites point  Rock weathering and
discharge) o. ‘untreated.
26% [ waste water

‘Non-point source
(erosion &
weathering)

TN

Antropogenic point

faecal

waste
7% Surfice runoff of soil





Figure 4. Pie chart for mass source contribution of water pollution

Based on the findings, rock weathering and untreated waste water from point source and non-point sources contributes about 41% of the total pollution load in the Kinta River. The composition of these parameters affects the mineralogical content of the river. Point source pollution of waste discharged from industrial effluent, treatment plants and domestic sewage contributes 26% of the pollution load. The next most significant source apportioned accounted for 24% explaining an influence from natural processes triggered by surface runoff of soil and waste materials. Faecal waste contributes 7% in the total pollution load, followed by 1% from erosion and weathering processes. The remaining category ranges from 0.1% to 0.2%

This method reveals the most significant variables that need to be retained and those that are redundant during subsequent monitoring processes. It also provides a simple explanation in the source classification of pollution in the Kinta River that can be used as a base by government and other stakeholders to develop policies and strategies to limit pollutant discharge and improve water quality for numerous uses. 

Conclusion

In this study, a reduction in the number of monitoring sites and observed parameters in the Kinta River were proposed based on the multivariate findings using HACA, DA, PCA and MLR. Spatial classification of the eight water quality monitoring station into three clusters was achieved using HACA. This classification reveals the level of similarities and redundancy in the characteristics of the monitoring processes. However, the findings for HACA indicates that three stations (2Pk22, 2Pk59 and 2Pk19) located in the upstream, middle and lower course can give a relative spatial representation of the water quality monitoring processes in the Kinta River. This will reduce cost and time of monitoring unnecessary sites. The 31 physicochemical parameters were also reduced to 8 most significant parameters with a P-value ˂0.0001 and a correct assignation of 84.34% using the forward stepwise DA. In the subsequent monitoring processes, it is suggested that these 8 parameters can provide a spatial representation of the water quality status in the Kinta River. This will also reduce the cost and time spent in observing the remaining 23 parameters. The result for PCA revealed that anthropogenic activities (industrial, treatment plants and domestic waste discharge, mining activities, fertilizer and pesticides) and natural processes (weathering of parent rock, surface runoff and erosion of river banks) constitutes the major possible sources of pollution in the study area. Furthermore, the mass source category apportionment was achieved using a combined MLR and principal component scores. In this regard, rock weathering and untreated waste water contributes 41% of the total pollution load, 26% by point source waste discharge, 24% by surface runoff, 7% faecal waste, erosion and weathering 1% and the remaining ranges from 0.1-0.2%. Even though water quality parameters exhibit a complex characteristic, multivariate technique can provide a simple explanation for a proper policy implementation by government and stakeholders involve in water quality management.
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