Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 737 – 742

 

 

 

EFFECT OF MECHANICAL GRINDING AND IONIC LIQUID PRE-TREATMENT ON OIL PALM FROND

 

(Kesan Pra-rawatan Pengisaran Mekanikal dan Cecair Ionik ke atas Pelepah Kelapa Sawit)

 

Siti Norsyarahah Che Kamarludin, Nor Sharliza Mohd Safaai*, Amizon Azizan , Hazimah Madzaki,

Mimi Suhada Mamat, Niswah Hashina Zulkifli, Mohd Firdaus Zainuddin

 

Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: sharliza972@salam.uitm.edu.my

 

 

Abstract

The present study was set to investigate the chemical structural group of different particle size of Oil palm frond (OPF) after mechanical and Ionic liquid (IL) pretreatment by FTIR analysis. The particle sizes range of biomass used were 0-75, 75-125, 125-180, 180-250 and 250-355 µm which were prepared through mechanical grinding process by using an analytical mill. IL used in this experiment was 1-ethyl-3-methylimidazolium chloride [EMIM][Ac] with two different concentration of 1M and 3M. Pretreatment by IL was done on BioshakeIQ for 3 hours at 800 rpm and 85 ˚C. The pretreated OPF was then analyzed using FTIR spectroscopy in order to evaluate the performance of mechanical grinding and IL pretreatment based on the change observed in chemical structure through functional group existed. It was found that after size reduction through grinding process, the spectra between all particle sizes obtained did not differ much except for particle size range of 75-125 µm. The particle size range showed on much characteristics of cellulose due to the broad peak within the 3600-3100 cm-1 which stand for O-H bonding. However, when the FTIR spectra were compared between before and after IL pretreatments, there were some different in peaks trend which explained there were some chemical structure changes within the OPF samples. There were some appearances and disappearances of certain peak were observed after the IL pretreatment especially the peak at band near 1700 cm-1 and 1550 cm-1.

 

Keywords: Mechanical pretreatment, Ionic liquid, lignocellulosic biomass, bioethanol, cellulose, oil palm frond

 

Abstrak

Kajian ini dijalankan untuk mempelajari kumpulan struktur kimia dari pelepah kelapa sawit (OPF) selepas pra-rawatan mekanikal dan cecair ionik (IL) dengan menggunakan analisis FTIR. Julat saiz zarah biomas yang digunakan adalah 0-75, 75-125, 125-180, 180-250 dan 250-355 μm yang disediakan melalui proses pengisaran mekanikal. IL yang digunakan dalam penyelidikan ini adalah 1-etil-3-methylimidazolium asetat [Emim][Ac] dengan dua kepekatan berbeza iaitu 1M dan 3M. Pra-rawatan dengan IL dilakukan menggunakan BioshakeIQ selama 3 jam pada 800 rpm dan 85˚C. Selepas pra-perawatan, OPF dianalisis menggunakan spektroskopi FTIR bagi menilai potensi pra-rawatan berdasarkan perubahan yang diperhatikan melalui kumpulan struktur kimia yang wujud sebleum dan selepas pra-rawatan. Berdasarkan keputusan selepas pengurangan saiz melalui proses pengisaran, spectrum dari analisis FTIR antara semua saiz zarah yang diperolehi tidak banyak berbeza kecuali saiz 75-125 μm. Saiz tersebut menunjukkan banyak ciri-ciri selulosa berbanding saiz lain berdasarkan puncak yang luas dalam lingkungan 3600-3100 cm-1 melibatkan ikatan OH. Apabila spektrum FTIR dibandingkan antara sebelum dan selepas pra-rawatan IL, perbezaan dapat dilihat antara puncak yang terbentuk di antara satu sama lain yang menjelaskan terdapatnya beberapa perubahan struktur kimia. Ada beberapa puncak yang sebelum dilakukan pra-rawatan menggunakan IL wujud tetapi, setelah pra-rawatan dijalankan hilang terutama yang terbentuk berhampiran 1700 cm-1 dan 1550 cm-1.

 

Kata kunci: Prarawatan mekanikal, Cecair ionik, biojisim lignoselulosa, bioetanol, selulosa, pelepah kelapa sawit

 

References

1.       Fu D. and Mazza G. (2011). Aqueous ionic liquid pretreatment of straw. Bioresour. Technol. 102 (13): 7008–11.

2.       Mood S. H., Golfeshan A. H., Tabatabaei M., Abbasalizadeh S., and Ardjmand M. Ardjmand (2013). Comparison of different ionic liquids pretreatment for barley straw enzymatic saccharification. 3 Biotech 3 (5): 399–406.

3.       Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple M., and Ladisch M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96 (6): 673–86.

4.       Tan H. T., Lee K. T., and Mohamed A. R.(2011). Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydr. Polym. 83 (4): 1862–1868.

5.       Zhang Q., Zhang P., Pei Z. J., and Wang D. (2013). Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature. Renew. Energy 60: 127–136.

6.       Zhang H., Wu J., Zhang J., and He J. (2005). 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid:  A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 38 (20): 8272–8277.

7.       Li C., Knierim B., Manisseri C., Arora R., Scheller H. V., Auer M., Vogel K. P., Simmons B. A., and Singh S. (2010). Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101 (13): 4900–6.

8.       M. Mandels, L. Hontz, and J. Nystrom (1974). Enzymatic Hydrolysis of Waste Cellulose. Biotechnology and Bioengineering, 16: 1471–1493.

9.       Moniruzzaman M., Ono T., Yusup S., Chowdhury S., and Bustam M. A. (2013). Improved biological delignification of wood biomass via Ionic liquids pretreatment: A one step process. Journal of Energy Technologies and Policy 3 (11): 144–152.

10.    Cheng G., Varanasi P., Arora R., Stavila V., and Simmons B. A. (2012). Impact of Ionic Liquid Pretreatment Conditions on Cellulose. J. Phys. Chem. B 116: 10049−10054.

11.    Proniewicz L. M., Paluszkiewicz C., Wesełucha-Birczyńska A., Majcherczyk H., Barański A., and Konieczna A. (2001). FT-IR and FT-Raman study of hydrothermally degradated cellulose. J. Mol. Struct. 596 (1–3): 163–169.

12.    Lionetto F., Del Sole R., Cannoletta D., Vasapollo G., and Maffezzoli A. (2012). Monitoring Wood Degradation during Weathering by Cellulose Crystallinity. Materials (Basel), 5 (12): 1910–1922.

13.    Ciolacu D., Ciolacu F., and Popa V. I. (2011). Amorphous Cellulose – Structure And Characterization. Cellulose Chemistry and Technology 45 (1-2): 13–21.

 

Previous                    Content                    Next