Malaysian Journal of Analytical
Sciences Vol 18 No 3 (2014): 737 – 742
EFFECT OF MECHANICAL GRINDING AND IONIC LIQUID PRE-TREATMENT
ON OIL PALM FROND
(Kesan Pra-rawatan
Pengisaran Mekanikal dan Cecair Ionik ke atas Pelepah Kelapa Sawit)
Siti Norsyarahah Che Kamarludin, Nor Sharliza Mohd Safaai*, Amizon
Azizan , Hazimah Madzaki,
Mimi Suhada Mamat, Niswah Hashina Zulkifli, Mohd Firdaus Zainuddin
Faculty of
Chemical Engineering,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: sharliza972@salam.uitm.edu.my
Abstract
The
present study was set to investigate the chemical structural group of different
particle size of Oil palm frond (OPF) after mechanical and Ionic liquid (IL)
pretreatment by FTIR analysis. The particle sizes range of biomass used were
0-75, 75-125, 125-180, 180-250 and 250-355 µm which were prepared through
mechanical grinding process by using an analytical mill. IL used in this
experiment was 1-ethyl-3-methylimidazolium chloride [EMIM][Ac] with two
different concentration of 1M and 3M. Pretreatment by IL was done on BioshakeIQ
for 3 hours at 800 rpm and 85 ˚C. The pretreated OPF was then analyzed
using FTIR spectroscopy in order to evaluate the performance of mechanical
grinding and IL pretreatment based on the change observed in chemical structure
through functional group existed. It was found that after size reduction
through grinding process, the spectra between all particle sizes obtained did
not differ much except for particle size range of 75-125 µm. The particle size
range showed on much characteristics of cellulose due to the broad peak within
the 3600-3100 cm-1 which stand for O-H bonding. However, when the FTIR spectra
were compared between before and after IL pretreatments, there were some
different in peaks trend which explained there were some chemical structure
changes within the OPF samples. There were some appearances and disappearances
of certain peak were observed after the IL pretreatment especially the peak at
band near 1700 cm-1 and 1550 cm-1.
Keywords: Mechanical
pretreatment, Ionic liquid, lignocellulosic biomass, bioethanol, cellulose, oil palm
frond
Abstrak
Kajian
ini dijalankan untuk mempelajari kumpulan struktur kimia dari pelepah kelapa
sawit (OPF) selepas pra-rawatan mekanikal dan cecair ionik (IL) dengan
menggunakan analisis FTIR. Julat saiz zarah biomas yang digunakan adalah 0-75,
75-125, 125-180, 180-250 dan 250-355 μm yang disediakan melalui proses
pengisaran mekanikal. IL yang digunakan dalam penyelidikan ini adalah
1-etil-3-methylimidazolium asetat [Emim][Ac] dengan dua kepekatan berbeza iaitu
1M dan 3M. Pra-rawatan dengan IL dilakukan menggunakan BioshakeIQ selama 3 jam
pada 800 rpm dan 85˚C. Selepas pra-perawatan, OPF dianalisis menggunakan
spektroskopi FTIR bagi menilai potensi pra-rawatan berdasarkan perubahan yang
diperhatikan melalui kumpulan struktur kimia yang wujud sebleum dan selepas
pra-rawatan. Berdasarkan keputusan selepas pengurangan saiz melalui proses
pengisaran, spectrum dari analisis FTIR antara semua saiz zarah yang diperolehi
tidak banyak berbeza kecuali saiz 75-125 μm. Saiz tersebut menunjukkan
banyak ciri-ciri selulosa berbanding saiz lain berdasarkan puncak yang luas
dalam lingkungan 3600-3100 cm-1 melibatkan ikatan OH. Apabila
spektrum FTIR dibandingkan antara sebelum dan selepas pra-rawatan IL, perbezaan
dapat dilihat antara puncak yang terbentuk di antara satu sama lain yang
menjelaskan terdapatnya beberapa perubahan struktur kimia. Ada beberapa puncak
yang sebelum dilakukan pra-rawatan menggunakan IL wujud tetapi, setelah
pra-rawatan dijalankan hilang terutama yang terbentuk berhampiran 1700 cm-1
dan 1550 cm-1.
Kata kunci: Prarawatan
mekanikal, Cecair ionik, biojisim lignoselulosa, bioetanol, selulosa, pelepah
kelapa sawit
References
1.
Fu D. and Mazza G. (2011).
Aqueous ionic liquid pretreatment of straw. Bioresour. Technol. 102 (13):
7008–11.
2.
Mood S. H., Golfeshan A. H., Tabatabaei M., Abbasalizadeh S.,
and Ardjmand M. Ardjmand (2013). Comparison of different ionic liquids
pretreatment for barley straw enzymatic saccharification. 3 Biotech 3 (5):
399–406.
3.
Mosier N., Wyman C., Dale B., Elander R., Lee Y. Y., Holtzapple
M., and Ladisch M. (2005). Features of promising technologies for pretreatment
of lignocellulosic biomass. Bioresour. Technol. 96 (6): 673–86.
4.
Tan H. T., Lee K. T., and Mohamed A. R.(2011). Pretreatment
of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for
glucose recovery: An optimisation study using response surface methodology. Carbohydr.
Polym. 83 (4): 1862–1868.
5.
Zhang Q., Zhang P., Pei Z. J., and Wang D. (2013). Relationships
between cellulosic biomass particle size and enzymatic hydrolysis sugar yield:
Analysis of inconsistent reports in the literature. Renew. Energy 60: 127–136.
6.
Zhang H., Wu J., Zhang J., and He J. (2005). 1-Allyl-3-methylimidazolium
Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing
Solvent for Cellulose. Macromolecules 38 (20): 8272–8277.
7.
Li C., Knierim B., Manisseri C., Arora R., Scheller H. V., Auer
M., Vogel K. P., Simmons B. A., and Singh S. (2010). Comparison of dilute acid
and ionic liquid pretreatment of switchgrass: Biomass recalcitrance,
delignification and enzymatic saccharification. Bioresour. Technol. 101
(13): 4900–6.
8.
M. Mandels, L. Hontz, and J. Nystrom (1974). Enzymatic Hydrolysis
of Waste Cellulose. Biotechnology and
Bioengineering, 16: 1471–1493.
9.
Moniruzzaman M., Ono T., Yusup S., Chowdhury S., and Bustam
M. A. (2013). Improved biological delignification of wood biomass via Ionic
liquids pretreatment: A one step process. Journal
of Energy Technologies and Policy 3 (11): 144–152.
10. Cheng G., Varanasi P., Arora
R., Stavila V., and Simmons B. A. (2012). Impact of Ionic Liquid Pretreatment
Conditions on Cellulose. J. Phys. Chem. B
116: 10049−10054.
11. Proniewicz L. M., Paluszkiewicz
C., Wesełucha-Birczyńska A., Majcherczyk H., Barański A., and Konieczna
A. (2001). FT-IR and FT-Raman study of hydrothermally degradated cellulose. J.
Mol. Struct. 596 (1–3): 163–169.
12. Lionetto F., Del Sole R., Cannoletta
D., Vasapollo G., and Maffezzoli A. (2012). Monitoring Wood Degradation during
Weathering by Cellulose Crystallinity. Materials (Basel), 5 (12): 1910–1922.
13. Ciolacu D., Ciolacu F.,
and Popa V. I. (2011). Amorphous Cellulose – Structure And Characterization. Cellulose Chemistry and Technology 45
(1-2): 13–21.