Malaysian Journal Of
Analytical Sciences Vol 18 No 3 (2014):
724 - 729
Physico-chemical characterizations of sawdust-derived Biochar as
potential solid fuels
(Pencirian Fizikal-Kimia bagi Biochar Diperoleh daripada Debu Kayu
Sebagai Potensi Bahan Bakar Pepejal)
Wan Azlina Wan Ab
Karim Ghani1,2*,
Gabriel da Silva2, Azil Bahari Alias2,3
1Department of Chemical
Engineering and Environmental Engineering, Faculty of Engineering,
Universiti Putra Malaysia, 43400
Serdang, Selangor, Malaysia
2Department of Chemical
and Biomolecular Engineering,
The University of Melbourne, Victoria
3010, Australia
3Faculty of Chemical
Engineering,
University Teknologi MARA Malaysia,40450 Shah Alam, Selangor, Malaysia
*Corresponding author: wanazlina@upm.edu.my
Abstract
Characterization
Malaysian rubber-wood sawdust derived biochar (MRWSB) produced in the fixed bed
pyrolysis under different temperatures (450 to 850°C) were studied for its
applicability as a solid fuel. A range of analyses were carried out, including
biochar oxidation reactivity , inorganic species, oxygen and hydrogen contents
in the biochars, release of heteroatoms in biochar as the gaseous product, and
biochar structural evolution during pyrolysis process. The results show that
the optimum temperature for carbonization to obtain a char having moderately
high yield was found as 450 °C. Thermogravimetric analyses (TG) shows that
temperatures induces a progressively more ordered carbonaceous structure and
leads to a significant changes in the biochar reactivity. The process is
coupled with the loss of heteroatoms, released as dominantly carbon dioxide (C02)
and carbon dioxide (CO). In addition, the elemental study of wood-derived
biochar shows the higher carbon content but with low H/C and 0/C ratio suggested this material was dominated
by highly aromatic structures and this were revealed in the Fourier transform
infra-red (FTIR). More importantly,
insignificant amount of inorganic species is evidenced in the samples.
Keywords: biochar, sawdust,
fixed-bed, pyrolysis, combustion, solid fuels
Abstrak
Pencirian biochar
berasaskan habuk kayu getah Malaysia (MRWSB) yang dihasilkan melalui pirolisis reaktor
tetap di bawah suhu yang berbeza
(450 hingga 850 °C) telah dikaji untuk kesesuaian
sebagai bahan bakar. Pelbagai analisis dilakukan,
termasuk kereaktifan biochar pengoksidaan, spesies bukan
organik, kandungan oksigen dan
hidrogen dalam biochar, pelepasan heteroatom didalam
biochar sebagai produk
gas, dan evolusi struktur
biochar semasa proses pirolisis. Hasil kajian menunjukkan bahawa
suhu optimum untuk karbonisasi untuk mendapatkan arang dengan
perolehan yang tinggi didapati pada suhu
450 °C. Analisis
Termogravimetri (TG) menunjukkan bahawa suhu mendorong struktur
karbon semakin lebih tersusun dan membawa kepada perubahan ketara dalam kereaktifan biochar ini. Proses ini
ditambah pula dengan kehilangan heteroatom, dilepaskan sebagai karbon dominan dioksida (C02) dan karbon dioksida (CO). Di samping itu,
kajian unsur biochar kayu yang diperolehi menunjukkan
kandungan karbon lebih tinggi tetapi
dengan rendah H/C
dan nisbah 0/C menyarankan
bahan ini dikuasai oleh struktur
yang sangat aromatik dan ini
telah diverifikasi di dalam transformasi Fourier infra-merah (FTIR). Lebih penting lagi, jumlah spesies bukan
organik yang tidak ketara terbukti
dalam sampel.
Kata kunci: biochar, habuk papan, reaktor tetap, pirolisis, pembakaran, bahan api
pepejal
References
1.
Werther
J., Saenger M. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science.
26:1-27.
2.
Sohi
S, Lopez-Cape E, Krull E and Bol R. (2009). Biochar, Climate change and soil: A
review to guide future research. CSIRO Land
and Water Science Report 05/09.: 64-80.
3.
Zhang
T, Walawender WP, Fan T, Fan M, Daugaard D. and Brown R. C.(2004). Preparation
of activate carbon from forest and agricultural residues through C02
activation. Journal of Chemical
Engineering 105:53-59.
4.
Sensoz
S., Demirala I. and Ferdi G. H (2006). Olive bagasse (Olea europea L. Pyrolysis
Bioresource Technology 97:429-436.
5.
Das
K.C., Garcia-Perez M., Bibens B., and Melear N(2008). Slow pyrolysis of poultry
litter and pine woody biomass, Impact of chars and bio-oils on microbial
growth. J. of Environmental Science and
Health: Part A 43:714-724
6.
Shinogi, Y.,
Yoshida H., Koizumi
T., Yamaoka M. and Saito, T. (2002). Basic
characteristics of lowtemperature carbon products from waste sludge. Advances in Environmental Research
7:661-665.
7.
Purevsuren
B. Avid, Tesche B. and Davajaav (2003). A biochar from casein and its
properties. J. Material Science 38:2347-2351.
8.
Sensoz
S. (2003). Slow pyrolysis of wood barks from Pinus brutia Ten and product
Compositions Bioresource Technology 89:307-311.
9.
Azargohar
R and Dalai A. K (2008). Steam and KOH activation of biochar: Experimental and
Modeling studies. Microporous Mesoporous
Material ll0: 413-421.
10.
Xinde
C., Lena M., Bin G. and Willie H. (2009). Dairy-Manure derived biochar
effectively sorbs lead and atrazine. Environmental
Science and Technology 43:3285-3291.
11.
Srinivasakannan
and Mohamad Zailani Abu Bakar(2004), Production of activated carbon from rubber
wood sawdust. Biomass and Bioenergy 27:89-96.
12.
Prakash
Kumar, B. G., Shivakamy, Lima Rose M. and Velan M. (2006). Preparation of steam
activated carbon rubberwood sawdust
(Hevea brasiliensis) and its adsorption kinetics. J. of Hazardous Material 136: 922-929.
13.
Materazzi
S., Gentili A. and Curini R. (2006). Application of evolved gas analysis Part
2: EGA by mass spectrometry, Talanta,
69:26-35.
14.
Demirbas
A. (2004). Effects of temperature and particle size on biochar yield from
pyrolysis of agricultural residues. J. of
Analytical and Applied Pyrolysis 72(2):243-248.
15.
Van de Velden
M, Baeyens J, Brems A, Janssens B. and Dewil R. (2010). Fundamentals, Kinetics and
endothermicity of the biomass pyrolysis
reaction. Renewable Energy, 35:
232-242.
16.
Schmidt W. M. I and Noack A.
G. (2000). Black carbon in soils and sediments:
Analysis, Distribution, implications,
and current challenges. Global Biogeochemical Cycles 14:777-793.