Malaysian Journal Of Analytical Sciences Vol 18 No 3 (2014): 724 - 729

 

 

 

Physico-chemical characterizations of sawdust-derived Biochar as potential solid fuels

 

(Pencirian Fizikal-Kimia bagi Biochar Diperoleh daripada Debu Kayu Sebagai Potensi Bahan Bakar Pepejal)

 

Wan Azlina Wan Ab Karim Ghani1,2*, Gabriel da Silva2, Azil Bahari Alias2,3

 

1Department of Chemical Engineering and Environmental Engineering, Faculty of Engineering,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2Department of Chemical and Biomolecular Engineering,

The University of Melbourne, Victoria 3010, Australia

3Faculty of Chemical Engineering,

University Teknologi MARA Malaysia,40450 Shah Alam, Selangor,  Malaysia

 

*Corresponding author: wanazlina@upm.edu.my

 

 

Abstract

Characterization Malaysian rubber-wood sawdust derived biochar (MRWSB) produced in the fixed bed pyrolysis under different temperatures (450 to 850°C) were studied for its applicability as a solid fuel. A range of analyses were carried out, including biochar oxidation reactivity , inorganic species, oxygen and hydrogen contents in the biochars, release of heteroatoms in biochar as the gaseous product, and biochar structural evolution during pyrolysis process. The results show that the optimum temperature for carbonization to obtain a char having moderately high yield was found as 450 °C. Thermogravimetric analyses (TG) shows that temperatures induces a progressively more ordered carbonaceous structure and leads to a significant changes in the biochar reactivity. The process is coupled with the loss of heteroatoms, released as dominantly carbon dioxide (C02) and carbon dioxide (CO). In addition, the elemental study of wood-derived biochar shows the higher carbon content but with low H/C and 0/C  ratio suggested this material was dominated by highly aromatic structures and this were revealed in the Fourier transform infra-red (FTIR).  More importantly, insignificant amount of inorganic species is evidenced in the samples.

 

Keywords: biochar, sawdust, fixed-bed, pyrolysis, combustion, solid fuels

 

Abstrak

Pencirian biochar berasaskan habuk kayu getah Malaysia (MRWSB) yang dihasilkan melalui pirolisis reaktor tetap di bawah suhu yang berbeza (450 hingga 850 °C) telah dikaji untuk kesesuaian sebagai bahan bakar. Pelbagai analisis dilakukan, termasuk kereaktifan biochar pengoksidaan, spesies bukan organik, kandungan oksigen dan hidrogen dalam biochar, pelepasan heteroatom didalam biochar sebagai produk gas, dan evolusi struktur biochar semasa proses pirolisis. Hasil kajian menunjukkan bahawa suhu optimum untuk karbonisasi untuk mendapatkan arang dengan perolehan yang tinggi didapati pada suhu 450 °C. Analisis Termogravimetri (TG) menunjukkan bahawa suhu mendorong struktur karbon semakin lebih tersusun dan membawa kepada perubahan ketara dalam kereaktifan biochar ini. Proses ini ditambah pula dengan kehilangan heteroatom, dilepaskan sebagai karbon dominan dioksida (C02) dan karbon dioksida (CO). Di samping itu, kajian unsur biochar kayu yang diperolehi menunjukkan kandungan karbon lebih tinggi tetapi dengan rendah H/C dan nisbah 0/C menyarankan bahan ini dikuasai oleh struktur yang sangat aromatik dan ini telah diverifikasi di dalam transformasi Fourier infra-merah (FTIR). Lebih penting lagi, jumlah spesies bukan organik yang tidak ketara terbukti dalam sampel.

 

Kata kunci: biochar, habuk papan, reaktor tetap, pirolisis, pembakaran, bahan api pepejal

 

References

1.       Werther J., Saenger M. (2000). Combustion of agricultural residues. Progress in Energy and Combustion Science. 26:1-27.

2.       Sohi S, Lopez-Cape E, Krull E and Bol R. (2009). Biochar, Climate change and soil: A review to guide future research. CSIRO Land and Water Science Report 05/09.: 64-80.

3.       Zhang T, Walawender WP, Fan T, Fan M, Daugaard D. and Brown R. C.(2004). Preparation of activate carbon from forest and agricultural residues through C02 activation. Journal of Chemical Engineering 105:53-59.

4.       Sensoz S., Demirala I. and Ferdi G. H (2006). Olive bagasse (Olea europea L. Pyrolysis Bioresource Technology 97:429-436.

5.       Das K.C., Garcia-Perez M., Bibens B., and Melear N(2008). Slow pyrolysis of poultry litter and pine woody biomass, Impact of chars and bio-oils on microbial growth. J. of Environmental Science and Health: Part A   43:714-724

6.       Shinogi,  Y.,  Yoshida  H.,  Koizumi  T.,  Yamaoka  M. and Saito, T. (2002). Basic characteristics of low­temperature carbon products from waste sludge. Advances in Environmental Research 7:661-665.

7.       Purevsuren B. Avid, Tesche B. and Davajaav (2003). A biochar from casein and its properties. J. Material Science 38:2347-2351.

8.       Sensoz S. (2003). Slow pyrolysis of wood barks from Pinus brutia Ten and product Compositions Bioresource Technology 89:307-311.

9.       Azargohar R and Dalai A. K (2008). Steam and KOH activation of biochar: Experimental and Modeling studies. Microporous Mesoporous Material ll0: 413-421.

10.    Xinde C., Lena M., Bin G. and Willie H. (2009). Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology 43:3285-3291.

11.    Srinivasakannan and Mohamad Zailani Abu Bakar(2004), Production of activated carbon from rubber wood sawdust. Biomass and Bioenergy 27:89-96.

12.    Prakash Kumar, B. G., Shivakamy, Lima Rose M. and Velan M. (2006). Preparation of steam activated  carbon rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. J. of Hazardous Material 136: 922-929.

13.    Materazzi S., Gentili A. and Curini R. (2006). Application of evolved gas analysis Part 2: EGA by mass spectrometry, Talanta, 69:26-35.

14.    Demirbas A. (2004). Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. J. of Analytical and Applied Pyrolysis 72(2):243-248.

15.    Van de Velden M, Baeyens J, Brems A, Janssens B. and Dewil R. (2010). Fundamentals, Kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35: 232-242.

16.    Schmidt W. M. I and Noack A. G. (2000). Black carbon in soils and sediments: Analysis, Distribution, implications, and current challenges. Global Biogeochemical Cycles 14:777-793.

 

Previous                    Content                    Next