Malaysian Journal of Analytical Sciences Vol 18 No 3 (2014): 629 - 641

 

 

 

THE EFFECTIVENESS OF POLYDIMETHYLSILOXANE (PDMS) AND HEXAMETHYLDISILOXANE (HMDSO) AS COMPATIBILIZER ON THE PREPARATION OF BETEL NUT FIBER (BNF) AND POLYPROPYLENE (PP) /POLYSTYRENE (PS) WOOD COMPOSITES

 

(Keberkesanan Polidimetilsiloksana (PDMS) dan Heksametildisiloksana (HMDSO) Sebagai Pengserasi Dalam Penyediaan Komposit Kayu Berasaskan Serabut Pinang dan Polipropilena (PP)/Polistirena (PS))

 

Nurul Izzaty Khalid, Azizah Baharum*,Siti Sarah Ramli, Siti Norhana Mohd Nor

 

School of Chemical Science and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

 

*Corresponding author: azeiss@ukm.edu.my

 

 

Abstract

This research was carried out to investigate the effectiveness of polydimethylsiloxane (PDMS) and hexamethyldisiloxane (HMDSO) as compatibilizing agent in producing wood composites of betel nut fiber/polypropylene (BNF/PP) and betel nut fiber/polystyrene (BNF/PS). Wood composite was prepared by blending 40% of matrix polymer and 60% of treated and untreated BNF using internal mixer Brabender Plasticoder at 170˚C with 50 rpm rotor speed for 13 minutes. The treatment was done prior to blending the materials by immersing the BNF in PDMS and HMDSO solutions with 1%, 3% and 5% of concentrations for 24 hours. The effects of 1% HMDSO treatment on BNF/PP composite contributed to high flexure strength and impact strength which are 19.2 MPa and 7.9 kJ/M2 respectively while the percentage of water absorption showed the minimum value of 6.7%. The impact strength of BNF/PS composite treated with 3% HMDSO showed maximum value that is 4.7 kJ/M2 and minimum percentage of water absorption, 6.8%. However, the flexure strength of untreated BNF/PS composite is higher than treated BNF/PS composite with value of 4.7 MPa. The morphology of treated BNF/PP composites from SEM micrographs showed better interface interaction between fibers and matrices. FTIR spectra showed the presence of siloxane groups such as Si-O, Si-CH3, Si-(CH3) and Si(CH3) as a result of HMDSO and PDMS treatment. Based on the characterization analysis, HMDSO treated composite of BNF/PP showed more effective interfacial interaction between BNF and matrices.

 

Keywords: polydimethylsiloxane, hexamethyldisiloxane, polypropylene, polystyrene, betel nut fiber, wood composite

 

Abstrak

Penyelidikan ini dijalankan untuk mengkaji keberkesanan polidimetilsiloksana (PDMS) dan heksadimetilsiloksana (HMDSO) sebagai agen pengserasi dalam penghasilan komposit kayu berasaskan serabut pinang/polipropilena (SP/PP) dan serabut pinang/polistirena (SP/PS). Komposit kayu disediakan dengan pengadunan 40% polimer matrik dan 60% SP terawat dan tak terawat menggunakan mesin pengadun dalaman Brabender Plasticoder pada suhu 170˚C dengan kadar pengadunan 50 rpm selama 13 minit. Rawatan ke atas SP dijalankan sebelum proses pengadunan dengan merendamkan SP selama 24 jam ke dalam larutan PDMS dan HMDSO yang mempunyai peratus kepekatan berbeza iaitu 1%, 3% dan 5 %. Kesan daripada rawatan 1% HMDSO ke atas komposit SP/PP telah menyumbang kepada peningkatan kekuatan lenturan dan hentaman dengan nilai masing-masingnya ialah 19.2 MPa dan 7.9 kJ/M2, sementara peratus serapan air terhadap komposit ini menunjukkan nilai minimum iaitu sebanyak 6.7%. Kekuatan hentaman bagi komposit SP/PS yang dirawat dengan 3% HMDSO menunjukkan nilai maksimum sebanyak 4.7 kJ/M2 dan peratus serapan air yang minimum iaitu 6.8%. Walaubagaimanapun, kekuatan lenturan bagi komposit SP/PS yang tak terawat lebih tinggi daripada komposit SP/PS yang terawat dengan bacaan kekuatan sebanyak 4.7 MPa. Morfologi komposit SP/PP yang terawat dapat dilihat daripada mikrograf mikroskop imbasan elektron yang mana ia menunjukkan interaksi antara muka yang lebih baik antara serabut dan matrik. Spektrum FTIR menunjukkan kehadiran kumpulan siloksana seperti Si-O, Si-CH3, Si-(CH3) and Si(CH3) iaitu hasil daripada rawatan HMDSO dan PDMS. Berdasarkan kepada analisis pencirian, komposit SP/PP yang dirawat dengan HMDSO menunjukkan interaksi antaramuka yang lebih berkesan antara SP dan matriks.

 

Kata kunci: polidimetilsiloksana, heksametildisiloksana, polipropilena, polistirena, serabut pinang, komposit kayu

 

References

1.       Matthew, F. L. & Rawlings, R. D. (1999). Composite Material: Engineering and Science. Imperial College of Science, U.K.

2.       Mcdonough, W. & Braungart, M. (2002). Cradle to Cradle: Remaking The Way We Make Things. United States: North Point Press.

3.       Sain, M. & Pervaiz, M. (2008). Wood  Polymer-Composites  Cambridge, England: Woodhead Publishing Limited and CRC Press LLC.

4.       Bengtsson, M. & Oksman, K. (2006). Silane Crosslinked Wood Plastic Composites: Processing and Properties.Composites Science and Technology, 66: 2177-2186.

5.       Winandy, J. E., Stark, N. M. & Clemons, C. M. (2004). Considerations in Recycling of Wood-Plastic Composites.5th Global Wood and Natural Fibre Composites Symposium. Kassel, Germany, April 27- 28.

6.       Basiji, F., Safdari, V., Nourbakhsh, A. & Pilla, S. (2010). The Effects of Fiber Length and Fiber Loading on the Mechanical Properties of Wood Plastic (Polypropylene) Composites.Turkish         Journal of Agriculture and Forestry, 34: 191 - 196.

7.       Bouafif, H., Koubaa, A., Perre, P. & Cloutier, A. (2009). Effects of Fiber Characteristics on the Physical and Mechanical Properties of Wood Plastic Composites.Composites Part A: Applied Science and Manufacturing, 40 (12): 1975 – 1981.

8.       Choudhury, S. U., Hazarika, S. B., Barbhuiya, A. H. & Ray, B. C. (2006). Natural Fibre Reinforced       Polymer Biocomposites and Blends: Synthesis, Characterization and Applications. Department of Chemistry, Cotton College, Guwahati, Assam, India  Department of Biochemistry, Regional College of               Higher Education, Guwahati, India Jadavpur University, Kolkata, India.

9.       Venkateshappa, S. C., Bennehalli, B., Kenchappa, M. G. & Ranganagowda, R. P. G. (2010). Flexural Behaviour of Areca Fibers Composites.BioResources, 5 (3): 1846 - 1858.

10.    Kumar, G. C. M. (2008). A Study of Short Areca Fiber Reinforced PF Composites. Proceedings of the World Congress on Engineering Vol II, London U.K, 2 – 4 July 2008.

11.    Nirmal, U., Jamil, N., Yousif, B. F., Rilling, D. & Brevern, P. V. (2010). The Potential of Using Treated Betel Nut Fibers as Reinforcement for Tribo-Bio Polymeric Composites Subjected to Dry/Wet Contact Conditions. Second International Conference on Natural Polymers, Bio-Polymers, Bio-    Materials, Their Composites, Blends, IPN’S and Gels Polyelectrolytes and Gels: Macro to Nano              Scales. Organized by Kottayam, Kerala, India, September 24-26.

12.    Clemons, C. (2008). Wood Polymer Composites. Cambridge, England: Woodhead Publising Limited and CRC Press LLC.

13.    Najafi, S. K., Mehdi, T. & Elham, H. (2007). Effect of Temperature, Plastic Type and Virginity on the   Water Uptake of Sawdust/Plastic Composites.Holz RohWerkst, 65: 37 – 382.

14.    Sobczak, L., Bruggemann, O. & Putz, R. F. (2012). Polyolefin Composites with Natural Fibers and         Wood-Modification of the Fiber/Filler-Matrix Interaction.Journal of Applied Science, 127 (1): 1 - 17.

15.    Wechsler, A., Hiziroglu, S. & Ballerini, A. A. (2008). Some of the Properties of Wood Plastic Composites.Proceedings of the 51st International Convention of Society of Wood Science and Technology, 1-10.

16.    Botros, M. (2003). Development of New Generation Coupling Agents for Wood-Plastic Composites. Intertech Conference The Global Outlook for Natural  and Wood Fiber Composites. Organized  by New Orleans, LA, 3 - 5 December.

17.    Hocker, H. (2002). Plasma Treatment of Textile Fibres.Pure Applied Chemistry, 74 (3): 423 - 427.

18.    Agnantopoulou, E., Tserki, V., Marras, S., Philippou, J. & Panayiotou, C. (2012). Development of Biodegradable Composites Based on Wood Waste Flour and Thermoplastic Starch.Journal of Applied   Polymer Science, 126 (1): 273 – 281.

19.    Gnatowski, M. (2009).  Water  Absorption  and  Durability  Composites. Ph.D.,  Research  Director,        Polymer Engineering Company Ltd. Burnaby, BC, Canada.

 

 

Previous                    Content                    Next