Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 629 - 641
THE EFFECTIVENESS OF POLYDIMETHYLSILOXANE (PDMS) AND
HEXAMETHYLDISILOXANE (HMDSO) AS COMPATIBILIZER ON THE PREPARATION OF BETEL NUT
FIBER (BNF) AND POLYPROPYLENE (PP) /POLYSTYRENE (PS) WOOD COMPOSITES
(Keberkesanan
Polidimetilsiloksana (PDMS) dan Heksametildisiloksana (HMDSO) Sebagai
Pengserasi Dalam Penyediaan Komposit Kayu Berasaskan Serabut Pinang dan
Polipropilena (PP)/Polistirena (PS))
Nurul Izzaty Khalid, Azizah Baharum*,Siti Sarah
Ramli, Siti Norhana Mohd Nor
School of
Chemical Science and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
*Corresponding author: azeiss@ukm.edu.my
Abstract
This
research was carried out to investigate the effectiveness of
polydimethylsiloxane (PDMS) and hexamethyldisiloxane (HMDSO) as compatibilizing
agent in producing wood composites of betel nut fiber/polypropylene (BNF/PP)
and betel nut fiber/polystyrene (BNF/PS). Wood composite was prepared by
blending 40% of matrix polymer and 60% of treated and untreated BNF using
internal mixer Brabender Plasticoder at 170˚C with 50 rpm rotor speed for
13 minutes. The treatment was done prior to blending the materials by immersing
the BNF in PDMS and HMDSO solutions with 1%, 3% and 5% of concentrations for 24
hours. The effects of 1% HMDSO treatment on BNF/PP composite contributed to
high flexure strength and impact strength which are 19.2 MPa and 7.9 kJ/M2
respectively while the percentage of water absorption showed the minimum
value of 6.7%. The impact strength of BNF/PS composite treated with 3% HMDSO
showed maximum value that is 4.7 kJ/M2 and minimum percentage of
water absorption, 6.8%. However, the flexure strength of untreated BNF/PS
composite is higher than treated BNF/PS composite with value of 4.7 MPa. The
morphology of treated BNF/PP composites from SEM micrographs showed better
interface interaction between fibers and matrices. FTIR spectra showed the
presence of siloxane groups such as Si-O, Si-CH3, Si-(CH3)
and Si(CH3) as a result of HMDSO and PDMS treatment. Based on the
characterization analysis, HMDSO treated composite of BNF/PP showed more
effective interfacial interaction between BNF and matrices.
Keywords: polydimethylsiloxane,
hexamethyldisiloxane, polypropylene, polystyrene, betel nut fiber, wood
composite
Abstrak
Penyelidikan
ini dijalankan untuk mengkaji keberkesanan polidimetilsiloksana (PDMS) dan
heksadimetilsiloksana (HMDSO) sebagai agen pengserasi dalam penghasilan
komposit kayu berasaskan serabut pinang/polipropilena (SP/PP) dan serabut
pinang/polistirena (SP/PS). Komposit kayu disediakan dengan pengadunan 40%
polimer matrik dan 60% SP terawat dan tak terawat menggunakan mesin pengadun
dalaman Brabender Plasticoder pada
suhu 170˚C dengan kadar pengadunan 50 rpm selama 13 minit. Rawatan ke atas
SP dijalankan sebelum proses pengadunan dengan merendamkan SP selama 24 jam ke
dalam larutan PDMS dan HMDSO yang mempunyai peratus kepekatan berbeza iaitu 1%,
3% dan 5 %. Kesan daripada rawatan 1% HMDSO ke atas komposit SP/PP telah
menyumbang kepada peningkatan kekuatan lenturan dan hentaman dengan nilai
masing-masingnya ialah 19.2 MPa dan 7.9 kJ/M2, sementara peratus
serapan air terhadap komposit ini menunjukkan nilai minimum iaitu sebanyak
6.7%. Kekuatan hentaman bagi komposit SP/PS yang dirawat dengan 3% HMDSO
menunjukkan nilai maksimum sebanyak 4.7 kJ/M2 dan peratus serapan
air yang minimum iaitu 6.8%. Walaubagaimanapun, kekuatan lenturan bagi komposit
SP/PS yang tak terawat lebih tinggi daripada komposit SP/PS yang terawat dengan
bacaan kekuatan sebanyak 4.7 MPa. Morfologi komposit SP/PP yang terawat dapat
dilihat daripada mikrograf mikroskop imbasan elektron yang mana ia menunjukkan
interaksi antara muka yang lebih baik antara serabut dan matrik. Spektrum FTIR
menunjukkan kehadiran kumpulan siloksana seperti Si-O, Si-CH3,
Si-(CH3) and Si(CH3) iaitu hasil daripada rawatan HMDSO
dan PDMS. Berdasarkan kepada analisis pencirian, komposit SP/PP yang dirawat
dengan HMDSO menunjukkan interaksi antaramuka yang lebih berkesan antara SP dan
matriks.
Kata kunci: polidimetilsiloksana,
heksametildisiloksana, polipropilena, polistirena, serabut pinang, komposit
kayu
References
1.
Matthew,
F. L. & Rawlings, R. D. (1999). Composite Material: Engineering and
Science. Imperial College of Science, U.K.
2.
Mcdonough,
W. & Braungart, M. (2002). Cradle to
Cradle: Remaking The Way We Make Things. United States: North Point Press.
3.
Sain,
M. & Pervaiz, M. (2008). Wood Polymer-Composites
Cambridge, England: Woodhead Publishing
Limited and CRC Press LLC.
4.
Bengtsson,
M. & Oksman, K. (2006). Silane Crosslinked Wood Plastic Composites:
Processing and Properties.Composites
Science and Technology, 66: 2177-2186.
5.
Winandy,
J. E., Stark, N. M. & Clemons, C. M. (2004). Considerations in Recycling of
Wood-Plastic Composites.5th
Global Wood and Natural Fibre Composites Symposium. Kassel, Germany, April
27- 28.
6.
Basiji,
F., Safdari, V., Nourbakhsh, A. & Pilla, S. (2010). The Effects of Fiber
Length and Fiber Loading on the Mechanical Properties of Wood Plastic
(Polypropylene) Composites.Turkish Journal of Agriculture and Forestry,
34: 191 - 196.
7.
Bouafif,
H., Koubaa, A., Perre, P. & Cloutier, A. (2009). Effects of Fiber
Characteristics on the Physical and Mechanical Properties of Wood Plastic
Composites.Composites Part A: Applied
Science and Manufacturing, 40 (12): 1975 – 1981.
8.
Choudhury,
S. U., Hazarika, S. B., Barbhuiya, A. H. & Ray, B. C. (2006). Natural Fibre
Reinforced Polymer Biocomposites and
Blends: Synthesis, Characterization and Applications. Department of Chemistry,
Cotton College, Guwahati, Assam, India Department
of Biochemistry, Regional College of Higher
Education, Guwahati, India Jadavpur University, Kolkata, India.
9.
Venkateshappa,
S. C., Bennehalli, B.,
Kenchappa, M. G. & Ranganagowda, R. P. G. (2010). Flexural Behaviour of
Areca Fibers Composites.BioResources, 5 (3): 1846 - 1858.
10.
Kumar,
G. C. M. (2008). A Study of Short Areca Fiber Reinforced PF Composites. Proceedings
of the World Congress on Engineering Vol II, London U.K, 2 – 4 July 2008.
11.
Nirmal,
U., Jamil, N., Yousif, B. F., Rilling, D. & Brevern, P. V. (2010). The
Potential of Using Treated Betel Nut Fibers as Reinforcement for Tribo-Bio
Polymeric Composites Subjected to Dry/Wet Contact Conditions. Second International Conference on Natural
Polymers, Bio-Polymers, Bio- Materials,
Their Composites, Blends, IPN’S and Gels Polyelectrolytes and Gels: Macro to
Nano Scales. Organized by
Kottayam, Kerala, India, September 24-26.
12.
Clemons,
C. (2008). Wood Polymer Composites. Cambridge, England: Woodhead Publising
Limited and CRC Press LLC.
13.
Najafi,
S. K., Mehdi, T. & Elham, H. (2007). Effect of Temperature, Plastic Type
and Virginity on the Water Uptake of
Sawdust/Plastic Composites.Holz RohWerkst, 65: 37 – 382.
14.
Sobczak,
L., Bruggemann, O. & Putz, R. F. (2012). Polyolefin Composites with Natural
Fibers and Wood-Modification of
the Fiber/Filler-Matrix Interaction.Journal
of Applied Science, 127 (1): 1 - 17.
15.
Wechsler,
A., Hiziroglu, S. & Ballerini, A. A. (2008). Some of the Properties of Wood
Plastic Composites.Proceedings of the 51st International Convention of
Society of Wood Science and Technology, 1-10.
16.
Botros,
M. (2003). Development of New Generation Coupling Agents for Wood-Plastic Composites.
Intertech Conference The Global Outlook for Natural and Wood Fiber Composites. Organized by New Orleans, LA, 3 - 5 December.
17.
Hocker,
H. (2002). Plasma Treatment of Textile Fibres.Pure Applied Chemistry, 74 (3): 423 - 427.
18.
Agnantopoulou,
E., Tserki, V., Marras, S., Philippou, J. & Panayiotou, C. (2012).
Development of Biodegradable Composites Based on Wood Waste Flour and
Thermoplastic Starch.Journal of Applied Polymer Science, 126 (1): 273 – 281.
19.
Gnatowski,
M. (2009). Water Absorption and Durability
Composites. Ph.D., Research Director, Polymer
Engineering Company Ltd. Burnaby, BC, Canada.