Malaysian
Journal of Analytical Sciences Vol 18 No 3 (2014): 485 - 490
THE CHARACTERIZATION STUDY OF
FERRITES (MAGNESIUM AND MANGANESE) USING SOL GEL METHOD
(Kajian Pencirian untuk Ferit (Magnesium dan Mangan)
Menggunakan Kaedah Sol Gel)
Rita Sundari*, Tang Ing Hua,
Madzlan Aziz, Umar Kalmar Nizar
Department of
Chemistry, Faculty of Science,
Universiti of
Technologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: ritsun2003@yahoo.com
Abstract
A
sol gel method with citric acid as an anionic surfactant was used to fabricate
nano magnesium ferrites (MgFe2O4) and manganese ferrites
(MnFeO3) under different calcination temperatures (300°C, 600°C and
800°C) for 2h, respectively. The Fourier
Transformation Infrared (FTIR) spectra of magnesium ferrites showed the
formation of tetrahedral and octahedral peaks of the metal oxides, which are
getting remarkable after calcination at 300°C because of the volatile matters
removal (H2O, CO2, NO2, etc.). The results of
the single point Brunauer, Emmett and Teller (BET) method showed a substantial
decrease of surface area for both the magnesium and manganese ferrites as the
calcinated temperatures getting increased from 300°C to 800°C. The SEM
micrograph of the magnesium ferrite showed flake structures at 800°C, and that
of manganese ferrite showed granule structures at the same temperature. The results of X-Ray Diffraction (XRD)
analysis of magnesium ferrite obtained a range of crystalline sizes from 11 nm
to 60 nm, and those of manganese ferrite from 27 nm to 38 nm as the
temperatures of both ferrites (magnesium and manganese) increased from 300°C to
800°C. The results of this study are useful for further applications, such as
semiconductors, heterogeneous and photo catalysts, magnetic materials and sensors.
Keywords: magnesium and
manganese ferrites; calcinations; characterizations
Abstrak
Kaedah
sol gel dengan asid sitrik sebagai anionik
surfaktan telah digunakan
untuk menghasilkan nano
ferit magnesium (MgFe2O4) dan ferit mangan (MnFeO3), di bawah
suhu pengkalsinan yang
berbeza (300°C, 600°C
dan 800°C) untuk 2 jam. Inframerah Transformasi Fourier (FTIR)
spektrum bagi ferit magnesium menunjukkan pembentukan puncak tetrahedral dan
oktahedral oksida logam yang semakin
menonjol selepas proses
pengkalsinan pada 300°C, disebabkan
penyingkiran jirim mudah meruap
(H2O, CO2, NO2, dll). Keputusan kaedah titik tunggal Brunauer,
Emmett dan Teller (BET)
menunjukkan apabila suhu pengkalsinan semakin meningkat daripada 300°C ke
800°C, luas permukaan turun dengan ketara untuk kedua- dua ferit
magnesium dan mangan.
Mikrograf SEM ferit magnesium pada 800°C menunjukkan struktur serpihan,
dan pada suhu yang sama ferit mangan menunjukkan struktur granul. Keputusan
analisis pembelauan X-Ray (XRD) bagi ferit magnesium menunjukkan julat saiz
kristal daripada 11 nm hingga 60 nm, dan ferit mangan daripada 27 nm hingga 38
nm, apabila suhu bagi kedua-dua ferit
(magnesium dan mangan) meningkat dari
300°C ke 800°C. Keputusan kajian ini amat berguna untuk aplikasi lanjut,
seperti semikonduktor, pemangkin heterogen dan foto, bahan magnet dan sensor.
Kata kunci: Magnesium dan
mangan ferit, pengkalsinan, pencirian
References
1.
Siemons, M., Weirich, Th., Mayer,
J. & Simon, U. (2004). Preparation of nanosized perovskite-type oxide via polyol method. Journal of Inorganic & General Chemistry 630(12): 2083-2089.
2.
Wolfram, T. &
Elliatioglu, S. (2006). Electronic and Optical Properties of
D-Band Perovskites. United Kingdom, University Press, Cambridge. 1-24.
3.
Maensiri, S., Sangmanee, M. &
Wiengmoon, A. (2008). Magnesium ferrite (MgFe2O4)
nanostructure fabricated by electrospinning. Nanoscale Research Letters, 4(3): 221-228.
4.
Liu, C.P., Li, M.W., Zhong, C.,
Huang, J.R., Tian, Y.L., Tong, L. & Mi, W.B. (2007). Comparative study of
magnesium ferrite nanocrystallites prepared by sol-gel and co-precipitation
methods. Journal of Material Science,
42: 6133-6138.
5.
Pradeep, A. &
Chandrasekaran, G. (2005). FTIR study of
Ni, Cu and Zn substituted nano-particles of MgFe2O4. Material
Letters, 60(3): 371-374.
6.
Pradhan, S.K., Bidb, S.,
Gateshki, M. & Petkov, V. (2005).
Microstructure characterization
and cation distribution of
nanocrystalline magnesium ferrite prepared by ball milling. Journal
of Material Chemistry & Physics, 93(1): 224-230.
7.
Mishra, S., Kundu, T.K., Barick,
K.C., Bahadur, D. & Chakravorty, D. (2006). Preparation of nanocrystalline
MnFe2O4 by doping with Ti4+ ions using solid
state reaction route. Journal of
Magnetism & Magnetic Materials, 307(2): 222-226.
8.
Lick, L.D. & Soria, D.B.
(2009). The synthesis of
MnFeO3 from the oxidative
thermal decomposition of Mn[Fe(CN)5NO].2H2O.
Journal of Argentine Chemical Society,
97(1): 102-108.
9.
Pradeep, A., Priyadharsini, P.
& Chandrasekaran, G. (2008). Sol gel route of synthesis of nanoparticles of
MgFe2O4 and XRD, FTIR and VSM study. Journal of Magnetism & Magnetic Materials, 320(21): 2774-2779.
10.
Naseri, M.G.,
Saion, E.B., Ahangar,
H.A., Hashim, M. & Shaari, A.H.
(2011). Synthesis and characterization ofmanganese ferrite nanoparticles by thermal
treatment method. Journal of Magnetism & Magnetic Materials, 323(13): 1745-1749.
11.
Hankare, P.P., Vader, V.T.,
Patil, N.M., Jadhav, S.D., Sankpal, U.B., Kadama, M.R., Chouguleb, B.K. &
Gajbhiye, N.S. (2009). Synthesis, characterization and studies on magnetic and electrical properties
of Mg ferrite with Cr substitution.
Journal of Material Chemistry
& Physics, 113(1): 233-238.
12.
Rashad, M.M. (2006). Synthesis
and magnetic properties of manganese ferrite from low grade manganese ore. Material
Science & Engineering B,
127(2-3): 123-129.