Malaysian
Journal of Analytical Sciences Vol 18 No 2 (2014): 299 – 305
SINTESIS HIDROGEL BERASASKAN NATA DE COCO DENGAN ASID AKRILIK SEBAGAI KO-MONOMER MENGGUNAKAN
KAEDAH PEMPOLIMERAN RADIKAL BEBAS
(Synthesis of
Hydrogel Based on Nata De Coco and
Acrylic Acid as Co-Monomer using Free Radical Polymerization Method)
Melissa Liew, Rizafizah Othaman,
Rozida Khalid, M.C.Iqbal M.Amin, Azwan Mat Lazim*
Pusat Pengajian Sains Kimia dan
Teknologi Makanan
Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
*Corresponding author: azwanlazim@ukm.edu.my
Abstrak
Nata de coco merupakan sejenis selulosa bakteria
yang dihasilkan oleh bakteria dari spesis Acetobacter xylinum. Sifatnya yang
lebih stabil secara fizikal berbanding selulosa daripada tumbuhan memberikan
kelebihan yang luar biasa untuk dibangunkan sebagai hidrogel yang sensitif
terhadap persekitaran. Hidrogel selulosa bakteria-ko-asid akrilik disintesis
berdasarkan kaedah pempolimeran radikal bebas. Agen pemula , ammonium persulfat
(APS)telah digunakan untuk memulakan tindak balas. Manakala agen taut silang,
N,N’-metilena bisakrilamida telah digunakan supaya tindak balas pempolimeran
menghasilkan jaringan yang lebih baik dan efektif. Ujian pembengkakan ke atas
hidrogel dijalankan pada larutan yang mempunyai pH yang berbeza untuk
mengenalpasti kebolehan hidrogel bertindak balas terhadap pH persekitaran.
Analisis ATR-FTIR dijalankan untuk memastikan wujudnya interaksi molekul antara
selulosa bakteria dan asid akrilik. Selain itu, penentuan nilai peralihan kaca
(Tg) menggunakan kaedah DSC dijalankan ke atas hidrogel yang berjaya
disintesis.
Kata kunci: Nata de Coco, hidrogel, kaedah pempolimeran
radikal bebas, asid Akrilik
Abstract
Nata de Coco or known as bacterial
cellulose is produced by Acetobacter xylinum where it is more stable than plant
cellulose. Moreover, it also provides outstanding advantages to be developed as
an environmental responsive hydrogels.
In this study the bacterial cellulose-g-acrylic acid hydrogel was synthesized
by using a free radical polymerization method. Ammonium persulfate (APS) was
used to initiate the reaction, while N,N'-methylene bisacrylamide has been used
as the crosslinking agent. In order to test the hydrogel respond, swelling
tests were made at different pH. Furthermore, ATR-FTIR analysis was used to
determine the interactions between bacterial cellulose and acrylic acid.
Finally, the determination of glass transition (Tg) was made by using DSC.
Keywords: Nata de Coco, hydrogel, free
radical polymerization, acrylic acid
References
1.
Qiu, Y. & Park, K. 2001. Environment-sensitive hydrogels
for drug delivery. Advanced Drug Delivery
Reviews 53: 321-339.
2.
Hoffman, A.S. 2002. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 43: 3-12.
3.
Chang,
C., Duan, B., Cai, J. & Zhang, L. 2010. Superadsorbent
hydrogels based on cellulose for smart swelling and controllable delivery. European
Polymer Journal 46: 92-100.
4.
Kost, J. 1996. Controlled drug delivery systems. Polymeric Materials Encyclopedia 1:
1509-1515.
5.
Blanco, M.D., Garcia, O., Trigo, R.M., Teijon, J.M. &
Katime, I. 1996. 5-Fluorouracil release from copolymeric hydrogels of itaconic
acid monoester. Biomaterials 17:
1061-1067.
6.
Peppas, N.A. 1991. Physiologically responsive gels. Bioactive and Compatible Polymers 6 (3):
241-246.
7.
Peppas, N.A., Bures, P., Leobandung, W. & Ichikawa, H.
2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics 50: 27-46.
8.
Eichhorn, S.J., Young, R.J. & Davies, G.R. 2005. Modeling
crystal and molecular deformation in regenerated cellulose fibres. Biomacromolecules 6: 507.
9.
Klemm,
D., Heublein, B., Fink, H. & Bohn, A. 2005. Cellulose:
fascinating biopolymer and sustainable raw material. Angewandate Chemie International Edition 44: 3358.
10.
Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K. &
De Wulf, P. 1998. Improved production of bacterial cellulose and its
application potential. Polymer
Degradation and Stability 59: 93-99.
11.
Sannino,
A., Demitri, C. & Madaghiele, M. 2009. Biodegradable
cellulose-based hydrogels: design and applications. Materials 2: 353-373.
12.
Kakugo,
A., Gong, J. & Osada, Y. 2007. Bacterial cellulose
based hydrogel for articular soft tissue. Cellulose
Communication 14: 50.
13.
Nadia Halib, Mohd. Cairul Iqbal Mohd. Amin & Ishak Ahmad.
2012. Physiochemical properties and characterisation of nata de coco from local
food industries as a source of cellulose. Sains
Malaysiana 41(2): 205-211.
14.
Zhou,
Y., Fu, S., Liu, H., Yang, S. & Zhan, H. 2011. Removal of methylene blue
dyes from wastewater using cellulose-based super-adsorbent hydrogels. Polymer Engineering and Science 51(2):
2417-2424.
15.
Pielichowski, K. & Njuguna, J. 2005. Thermal degradation
of polymeric materials. United Kingdom: Rapra Technology Limited.
16.
Majumdar, S., Dey, J. & Adhikari, B. 2006. Taste sensing
with polyacrylic acid grafted cellulose membrane. Talanta 69: 131-139.
17.
Mohd. Cairul Iqbal Mohd. Amin, Naveed Ahmad, Nadia Halib
& Ishak Ahmad. 2012. Synthesis and characterisation of thermo- and
pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88: 465-473.
18.
Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R.
2009. Introduction to spectroscopy. United States of America: Brooks/Cole
Cengage Learning.