Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 299 – 305

 

 

 

SINTESIS HIDROGEL BERASASKAN NATA DE COCO DENGAN ASID AKRILIK SEBAGAI KO-MONOMER MENGGUNAKAN KAEDAH PEMPOLIMERAN RADIKAL BEBAS

 

(Synthesis of Hydrogel Based on Nata De Coco and Acrylic Acid as Co-Monomer using Free Radical Polymerization Method)

 

Melissa Liew, Rizafizah Othaman, Rozida Khalid, M.C.Iqbal M.Amin, Azwan Mat Lazim*

 

Pusat Pengajian Sains Kimia dan Teknologi Makanan

Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: azwanlazim@ukm.edu.my

 

 

Abstrak

Nata de coco merupakan sejenis selulosa bakteria yang dihasilkan oleh bakteria dari spesis Acetobacter xylinum. Sifatnya yang lebih stabil secara fizikal berbanding selulosa daripada tumbuhan memberikan kelebihan yang luar biasa untuk dibangunkan sebagai hidrogel yang sensitif terhadap persekitaran. Hidrogel selulosa bakteria-ko-asid akrilik disintesis berdasarkan kaedah pempolimeran radikal bebas. Agen pemula , ammonium persulfat (APS)telah digunakan untuk memulakan tindak balas. Manakala agen taut silang, N,N’-metilena bisakrilamida telah digunakan supaya tindak balas pempolimeran menghasilkan jaringan yang lebih baik dan efektif. Ujian pembengkakan ke atas hidrogel dijalankan pada larutan yang mempunyai pH yang berbeza untuk mengenalpasti kebolehan hidrogel bertindak balas terhadap pH persekitaran. Analisis ATR-FTIR dijalankan untuk memastikan wujudnya interaksi molekul antara selulosa bakteria dan asid akrilik. Selain itu, penentuan nilai peralihan kaca (Tg) menggunakan kaedah DSC dijalankan ke atas hidrogel yang berjaya disintesis.

 

Kata kunci: Nata de Coco, hidrogel, kaedah pempolimeran radikal bebas, asid Akrilik

 

Abstract

Nata de Coco or known as bacterial cellulose is produced by Acetobacter xylinum where it is more stable than plant cellulose. Moreover, it also provides outstanding advantages to be developed as an environmental responsive  hydrogels. In this study the bacterial cellulose-g-acrylic acid hydrogel was synthesized by using a free radical polymerization method. Ammonium persulfate (APS) was used to initiate the reaction, while N,N'-methylene bisacrylamide has been used as the crosslinking agent. In order to test the hydrogel respond, swelling tests were made at different pH. Furthermore, ATR-FTIR analysis was used to determine the interactions between bacterial cellulose and acrylic acid. Finally, the determination of glass transition (Tg) was made by using DSC.

 

Keywords: Nata de Coco, hydrogel, free radical polymerization, acrylic acid

 

References

1.       Qiu, Y. & Park, K. 2001. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 53: 321-339.

2.       Hoffman, A.S. 2002. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 43: 3-12.

3.       Chang, C., Duan, B., Cai, J. & Zhang, L. 2010. Superadsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal 46: 92-100.

4.       Kost, J. 1996. Controlled drug delivery systems. Polymeric Materials Encyclopedia 1: 1509-1515.

5.       Blanco, M.D., Garcia, O., Trigo, R.M., Teijon, J.M. & Katime, I. 1996. 5-Fluorouracil release from copolymeric hydrogels of itaconic acid monoester. Biomaterials 17: 1061-1067.

6.       Peppas, N.A. 1991. Physiologically responsive gels. Bioactive and Compatible Polymers 6 (3): 241-246.

7.       Peppas, N.A., Bures, P., Leobandung, W. & Ichikawa, H. 2000. Hydrogels in pharmaceutical formulations. European Journal of Pharmaceutics and Biopharmaceutics 50: 27-46.

8.       Eichhorn, S.J., Young, R.J. & Davies, G.R. 2005. Modeling crystal and molecular deformation in regenerated cellulose fibres. Biomacromolecules 6: 507.

9.       Klemm, D., Heublein, B., Fink, H. & Bohn, A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angewandate Chemie International Edition 44: 3358.

10.    Vandamme, E.J., De Baets, S., Vanbaelen, A., Joris, K. & De Wulf, P. 1998. Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability 59: 93-99.

11.    Sannino, A., Demitri, C. & Madaghiele, M. 2009. Biodegradable cellulose-based hydrogels: design and applications. Materials 2: 353-373.

12.    Kakugo, A., Gong, J. & Osada, Y. 2007. Bacterial cellulose based hydrogel for articular soft tissue. Cellulose Communication 14: 50.

13.    Nadia Halib, Mohd. Cairul Iqbal Mohd. Amin & Ishak Ahmad. 2012. Physiochemical properties and characterisation of nata de coco from local food industries as a source of cellulose. Sains Malaysiana 41(2): 205-211. 

14.    Zhou, Y., Fu, S., Liu, H., Yang, S. & Zhan, H. 2011. Removal of methylene blue dyes from wastewater using cellulose-based super-adsorbent hydrogels. Polymer Engineering and Science 51(2): 2417-2424.

15.    Pielichowski, K. & Njuguna, J. 2005. Thermal degradation of polymeric materials. United Kingdom: Rapra Technology Limited.

16.    Majumdar, S., Dey, J. & Adhikari, B. 2006. Taste sensing with polyacrylic acid grafted cellulose membrane. Talanta 69: 131-139.

17.    Mohd. Cairul Iqbal Mohd. Amin, Naveed Ahmad, Nadia Halib & Ishak Ahmad. 2012. Synthesis and characterisation of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88: 465-473.

18.    Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R. 2009. Introduction to spectroscopy. United States of America: Brooks/Cole Cengage Learning.