Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 271 – 283

 

 

 

REMOVAL OF SELECTED HEAVY METALS FROM GREEN MUSSEL VIA CATALYTIC OXIDATION

 

(Penyigkiran Logam-Logam Tertentu Daripada Kupang Melalui Pengoksidaan Bermangkin)

 

Faizuan Abdullah, Abdull Rahim Mohd Yusoff, Wan Azelee Wan Abu Bakar*, Razali Ismail, Dwi Priya Hadiyanto

 

Department of Chemistry,

Faculty of Science,

Universiti Teknologi Malaysia,81310 UTM Johor Bahru, Johor Darul Ta’zim, Malaysia.

 

*Corresponding author: wazelee@kimia.fs.utm.my

 

 

Abstract

Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe2O3, and ZnO catalysts. The lethal dose of LD50 to rats of PAA is 1540 mg kg-1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 ºC as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL-1 PAA and catalyzed with Fe2O3/Al2O3 for up to 90% mercury (Hg) removal.  Using PAA with only 1 hour of reaction time, at room temperature (30-35ºC), pH 5-6 and salinity of 25-28 ppt, 90% lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel.

 

Keywords: Green mussel (Perna viridis), heavy  metals, catalytic oxidative demetallisation, peracetic acid

 

Abstrak

Perna viridis atau kupang adalah produk akuakultur penting dan berpotensi tinggi di selatan Semenanjung Malaysia terutama di Selat Johor. Akibat kepesatan peningkatan populasi manusia dan aktiviti pembangunan di sekitar selat tersebut, kesan signifikan yang berlaku menyebabkan hidupan marin terutama kupang turut tercemar dengan peningkatan kandungan logam berat. Kandungan logam tersebut telah melebihi had yang dibenarkan Peraturan Makanan Malaysia 1985 dan Peraturan Makanan Kesatuan Eropah (EU) (EC No:1881/2006). Pensampelan telah dilakukan di Selat Johor dari Teluk Danga hingga ke Pendas untuk sampel kupang. Kajian ini memperkenalkan teknik pengoksidaan bermangkin untuk penyingkiran logam dalam kupang menggunakan agen pengoksidaan yang selamat dimakan seperti asid perasetik (PAA) dimangkinkan oleh CuO, Fe2O3, dan ZnO yang disokong pada permukaan manik alumina (Al2O3). LD50 utk PAA ialah 1540 mgkg-1, telah disahkan Institut Keselamatan dan Kesihatan Kebangsaan (NIOSH) Amerika Syarikat. Bagi mangkin yang digunakan, suhu kalsinasi terbaik ialah pada suhu 1000 ºC seperti yang dibuktikan dengan analisa XRD, Analisis Penjerapan Nitrogen (keluasan permukaan BET)  dan mikrograf FESEM. Proses penyingkiran logam dari kupang telah dilakukan dengan hanya menggunakan 100 mgL-1 PAA dimangkinkan oleh Fe2O3/Al2O3 untuk penyingkiran hampir 90% merkuri (Hg), dan menggunakan PAA tanpa mangkin untuk penyingkiran hampir 90% plumbum (Pb) dengan masa tindakbalas hanya 1 jam, dalam suhu sekitar 30-35 ºC, pH 5-6 dan kemasinan air 25-28 ppt. Penemuan ini memberikan prospek yang sangat baik dalam membangunkan kaedah yang efisyen dan praktikal untuk menyingkirkan logam dari kupang yang masih hidup sebelum dipasarkan.

 

Kata kunci: Kupang (Perna viridis), logam berat, penyingkiran logam pengoksidaan bermangkin, asid perasitik

 

References

1.       Bondad-Reantaso M.G., Subasinghe R.P., Arthur J.R., Ogawa K., Chinabut S., Adlard R., Tan Z., Shariff M. (2005). Desease and Health Management in Asian Aquaculture. Veterinary Parasitology, 132: 249 272.

2.       Chua T.E., Paw J.H., Guarin F.Y. (1989). The Environmental Impact of Aquaculture and the Effects of Pollution on Coastal Aquaculture Development in Southeast Asia. Mar. Poll. Bull, 20 (7): 335-343.

3.       Hertler H., Boettner A.R., Ramrez-Toro G.I., Minnigh H., (1989). The Environmental Impact of Aquaculture and the Effects of Pollution on Coastal Aquaculture Development in Southeast Asia. Mar. Poll. Bull, 20(7): 335-343.

4.       Hung C.L.H., Xu Y., Lan J.C.W., Connel D.W., Lam M.H.W., Nicholson S., Richardson B.J., Lam P.K.S., (2006) A preliminary Risk Assessment of Organochlorines Accumulated in Fish to The Indo-Pacific Humpback Dolphin (Sousa chinensis) in the Northwestern Waters of Hong Kong. Environmental Pollution, 144: 190-196.

5.       Waldichuck M. (1974). Coastal Marine Pollution and Fish. Ocean Management, 2: 1-60.

6.       Monaghan R.M., Wilcock R.J., Smith L.C., Tikkisetty B., Thorrold B.S., Coastall D. (2007). Linkages Between Land Management Activities and Water Quality in an Intensively Farmed Catchment in Southern New Zealand. Agriculture Ecosystem & Environment, 118: 211-222.

7.       Tuteja N.K., Beale G., Dawes W., Vaze J., Murphy B., Barnett P., Rancic A., Evans R., Geeves G., Rassam D.W., Miller M. (2003). Predicting the Effects of Landuse Change on Water and Salt Balance- A Case Study of A Catchment Affected by Dryland Salinity in NSW, Australia. Journal of Hydrology, 283: 67-90.

8.       Tal Y., Schreier H.J., Sowers K.R., Stubbefield J.D., Place A.R., Zohar Y. (2009). Environmentally Sustainable Land-based Marine Aquaculture.  Aquaculture, 286: 28-35.

9.       Yap C.K., Ismail A., Tan S.G., Omar H. (2002). Correlations Between Speciation of Cd, Cu, Pb and Zn in Sediment and Their Concentrations in Total Soft Tissue of Green-Lipped Mussel Pernaviridis from The West Coast of Peninsular Malaysia. Environmental International, 28: 117-126.

10.    Al-Barwani S.M., Arshad A., Nurul Amim S.M., Japar S.B., Siraj S.S., Yap C.K. (2007). Population Dynamics of The Green Mussel Perna Viridis from The High Spat-Fall Coastal Water of Malacca, Peninsular Malaysia. Fisheries Research, 84: 147-152.

11.    Nicholson S., (2003). Lysosomal Membrane Stability, Phagocytosis and Tolerance to Emersion in The Mussel Perna viridis (Bivalvia: Mytilidae) followingexposure to acute, sublethal, copper. Chemoephere, 52: 1147-1151

12.    Nicholson S. and Lam P.K.S., (2005). Pollution Monitoring in Southeast Asia Using Biomarkers in The Mytilid Mussel Perna viridis (Mytilidae: Bivalvia). Cement Environmental International, 31: 121-1.

13.    Tanabe S., Prudente M.S., Kan-atireklap S., Subramanian A. (2000). Mussel Watch: Marine Pollution Monitoring of Butyltins and Organochlorines in Coastal Waters of Thailand, Philippines and India. Ocean & Coastal Management, 43: 819-839.

14.    Yap C.K., Ismail A., Tan S.G. (2003). Background Concentrations of Cd, Cu, Pb And Zn In The Green-Lipped Mussel Perna Viridis (Linnaeus) from Peninsular Malaysia. Mar. Poll. Bull., 46: 1035-1048.

15.    Monirith I., Ueno D., Takahashi S., Nakata H., Sudaryanto A., Subramanian A.,  Karuppiah S., Ismail A., Muchtar M., Jinshu Zheng, Richardson B.J., Prudente M., Hue N.D., Tana T.S., Tkalin A.V., Tanabe S. (2003). Asia-Pacific Mussel Watch: Monitoring Contamination of Persistent Organochlorine Compounds in Coastal Waters of Asian Countries. Mar. Poll. Bull., 46: 281-300.

16.    Yap C.K., Ismail A., Omar H., Tan S.G. (2004a). Toxicities and Tolerances of Cd, Cu, Pb And Zn In a Primary Producer (Isochrysis Galbana) and in a Primary Consumer (Perna viridis). Environmental International, 29: 1097-1104.

17.    Rajagopal S., Venugopalan V.P., nair K.V.K., Jenner H.A., den Hartog C., (1998). Reproduction, Growth Rate And Culture Potential Of The Green Mussel, Perna viridis  L./ In Edaiyur Backwaters, East Coast of India. Aquaculture, 162: 187-202.

18.    LokmanShamsudin (1992). Lipid and Fatty Acid Composition of Microalgae Used in Malaysian Aquaculture as Live Food for the Early Stage of Penaeid Larvae.  Journal of Applied Physicology. 4: 371-378.

19.    Okay O.S., Donkin P., Peters L.D., Livingstone D.R. (1999). The Role Of Algae (Isochrysisgalbana) Enrichment on The Bioaccumulation of Benzo[a]Pyrene and Its Effects on The Blue Mussel Mytilusedulis. Environ. Poll, 110: 103-113.

20.    Nicholson S., (1999). Cardiac and Lysosomal Responses to Periodic Copper in the Mussel Pernaviridis (Bivalvia: Mytilidae). Mar. Poll. Bull, 38(12): 1157-1162.

21.    Krishnakumar P.K., Asokan P.K., Pillai V.K., (1990). Physiological And Cellular Responses To Copper And Mercury In The Green Mussel Perna viridis (Linnaeus). Aquatic Toxicology, 18: 163-174.

22.    Fernley P.W., Moore M.N., Lowe D.M., Donkin P., Evans S., (2000). Impact Of The Sea Empress Oil Spill on Lysosomal Stability in Mussel Blood Cells. Marine Environmental Research, 50: 451-455.

23.    Fang J.K.H., Wu R.S.S., Zheng P.G.J., Lam P.K.S., Shin P.K.S., (2008a). Induction, Adaptation and Recovery of Lysosomal Integrity in Green-lipped Mussel Perna viridis. Mar. Poll. Bull., 57, 467-472.

24.    Moore M.N., Viarengo A., Donkin P., Hawkins A.J.S., (2007). Autophagic and Lysosomal Reactions to Stress in The Hepatopancreas of Blue Mussels.  Aquatic Toxicology, 84: 80-91.

 

Previous                    Content                    Next