Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 391 – 397
FLEXURAL PROPERTIES OF ACTIVATED CARBON FILLED EPOXY
NANOCOMPOSITES
(Sifat
Lenturan Nanokomposit Epoksi Berpengisi Karbon Teraktif)
H.P.S. Abdul
Khalil1,2, M. Jawaid2,3*, P. Firoozian1, Othman Y. Alothman3, M. T. Paridah2, E.S. Zainudin2
1School of Industrial Technology,
Universiti Sains Malaysia, 11800 USM Penang,
Malaysia
2Department of Biocomposite Technology, Institute of
Tropical Forestry and Forest Products (INTROP),
Universiti Putra Malaysia, 43400 Serdang, Malaysia
3Faculty of Chemical
Engineering,
King Saud
University, Riyadh 11451,
Saudi Arabia
*Corresponding author: jawaid_md@yahoo.co.in
Abstract
Activated carbon (AC) filled epoxy nanocomposites obtained by
mixing the desired amount of nano AC
viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from
agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nanocomposites with 1%, and 5% filler
loading were measured.
In terms of flexural strength and
modulus, a significant increment was observed with addition of 1% vol and 5%
vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium
hydroxide and phosphoric acid) on the flexural properties of epoxy
nanocomposites were also investigated. Flexural strength of activated carbon-bamboo
stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy
nanocomposites showed almost same value in case of 5% potassium
hydroxide activated carbón. Flexural strength of potassium hydroxide activated carbon-based epoxy nanocomposites
was higher than phosphoric acid activated
carbon. The flexural toughness of both the potassium
hydroxide and phosphoric acid activated
carbon reinforced composites range between 0.79 – 0.92 J. It attributed that developed activated carbon filled epoxy
nanocomposites can be used in different applications.
Keywords: epoxy matrix; activated
carbon; nanocomposites; flexural properties
Abstrak
Nanokomposit epoksi berpengisi karbon
teraktif diperoleh dengan mencampurkan sejumlah nano karbon teraktif iaitu buluh, kelapa sawit
tandan buah kosong, dan tempurung kelapa yang dikehendaki daripada biomas pertanian
dengan resin epoksi. Sifat lenturan nanokomposit epoksi berpengisi karbon
teraktif dengan 1% dan 5% muatan pengisi telah diukur. Dari segi kekuatan
lenturan dan modulus, peningkatan ketara diperhatikan dengan jumlah penambahan
1% dan 5% nano-karbon teraktif berbanding epoksi tanpa pengisi. Kesan karbon
teraktif menggunakan dua bahan kimia (kalium hidroksida dan asid fosforik)
terhadap sifat lenturan terawat juga dikaji. Kekuatan lenturan karbon
teraktif-batang buluh, karbon teraktif-kelapa sawit, dan karbon
teraktif-tempurung kelapa diperkukuh nanokomposit epoksi menunjukkan nilai yang
hampir sama seperti 5% kalium hidroksida karbon teraktif. Kekuatan lenturan
kalium hidroksida karbon teraktif berasaskan nanokomposit epoksi adalah lebih
tinggi daripada asid fosforik karbon teraktif. Ketahanan lenturan bagi
kedua-dua kalium hidroksida dan asid
fosforik karbon teraktif diperkukuh komposit epoksi adalah di antara
0.79 – 0.92 J. Ia menyifatkan bahawa pembangunan nanokomposit epoksi berpengisi
karbon teraktif boleh digunakan dalam
aplikasi yang berbeza.
Kata
kunci:
matrik epoksi; karbon teraktif; nanokomposit; sifat lenturan
References
1. Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L. & kamaruddin, A. H.
(2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch
fiber for production of xylose. Bioresource
Technology, 98(3): 554-559.
2. Umikalsom, M. S., Ariff, A. B., Zulkifli, H. S., Tong, C. C., Hassan, M.
A. & Karim, M. I. A. (1997). The treatment of oil palm empty fruit bunch
fibre for subsequent use as substrate for cellulase production by Chaetomium
globosum Kunze. Bioresource Technology,
62(1-2): 1-9.
3. Qiao, W., Korai, Y., Mochida, I., Hori, Y. & Maeda, T. (2002).
Preparation of an activated carbon artifact: oxidative modification of coconut
shell-based carbon to improve the strength. Carbon,
40(3): 351-358.
4. Sekar, M., Sakthi, V. & Rengaraj, S. (2004). Kinetics and equilibrium adsorption
study of lead(II) onto activated carbon prepared from coconut shell. Journal Colloid Interface Science, 279(2):
307-313.
5. Youssef, A. M., Radwan, N. R. E., Abdel-Gawad, I. & Singer, G. A. A. (2005).
Textural properties of activated carbons from apricot stones. Colloid Surface A: Physicochem Engineering
Aspects, 252(2-3): 143-151.
6. Zhang, T., Walawender, W. P., Fan, I. T., Fan, M., Daugaard, D. &
Brown, R. C. (2004). Preparation of activated carbon from forest and
agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2): 53-59.
7. Guo, J., Xu, W. S., Chen, Y. L. & Lua, A. C. (2004). Adsorption of NH3
onto activated carbon prepared from palm shells impregnated with H2SO4. J ournal Colloid Interface Science, 281(2):
285-290.
8. Ko, D. C. K., Mui, E. L. K., Lau, K. S. T. & Mckay, G. (2004).
Production of activated carbons from waste tire-process design and economical
analysis. Waste Management, 24(9): 875-888.
9. Hayashi, J., Yamamoto, N., Horikawa, T., Muroyama, K. & Gomes, V. G. (2005).
Preparation and characterization of high specific surface area activated
carbons from K2CO3 treated waste polyurethane. J. Colloid Interface Sci, 281(2): 437-443.
10. Mirmohseni, A. & Zavareh, S. (2010). Preparation and characterization
of an epoxy nanocomposite toughened by a combination of thermoplastic, layered
and particulate nano-fillers. Materials
& Design, 31(6): 2699-2706.
11. Bakar, M., Kostrzewa, M., Hausnerova, B. & Sar, K. (2010). Preparation
and property evaluation of nanocomposites based on polyurethane-modified
epoxy/montmorillonite systems. Advances
in Polymer Technology, 29(4): 237-248.
12. Palencia, C., Mazo, M. A., Nistal, A., Rubio, F., Rubio, J. & Oteo, J.
L. (2011). Processing and properties of carbon nanofibers reinforced epoxy
powder composites. Journal of
Nanoparticle Research, 13(11), 6021-6034.
13. Abdul Khalil, H.P..S., Firoozian, P., Jawaid, M., Akil, H.M., Hassan, A. (2013a). Preparation of activated carbon filled epoxy
nanocomposites: Morphological and thermal
properties. Journal of Thermal Analysis and Calorimetry, 113(2): 623-631.
14. Abdul Khalil, H.P.S., Jawaid, M., Firoozian, P., Zainudin, E.S., Paridah, M.T. (2013b). Dynamic Mechanical Properties of Activated
Carbon–Filled Epoxy Nanocomposites. International
Journal of Polymer Analysis and Characterization, 18(4): 247-256.
15. Abdul Khalil, H.P..S., Firoozian, P., Bakare, I.O., Akil, H.M., Noor, A. M. (2010). Exploring biomass based carbon
black as filler in epoxy composites: flexural and thermal properties. Material & Design, 31(7): 3419-3425.
16. Firoozian, P., Bhat, I.U.H., Abdul Kahlil, H.P.S., Noor, A.M., Akil, H.M.,
Bhat, A.H. (2011). High
surface area activated carbon prepared from agricultural biomass:
empty fruit bunch (EFB), bamboo stem and coconut shells by chemical
activation with H3PO4. Material
Technology, 26: 222-228.
17. Teh, P. L., Mariatti, M., Akil, H. M., Seetharamu, K. N., Wagiman, A. N.
R. & Beh, K. S. (2008). Effect of Ethanol as Diluent on the Properties of
Mineral Silica Filled Epoxy Composites. Journal
of Composite Materials, 42(2): 129-142.
18. Selvin, T. P., Kuruvilla, J. & Sabu, T. (2004). Mechanical properties
of titanium dioxide-filled polystyrene microcomposites. Materials Letters, 58(3-4): 281-289.
19. Debnath, S., Ranade, R., Wunder, S. L., Mccool, J., Boberick, K. &
Baran, G. (2004). Interface effects on mechanical properties of
particle-reinforced composites. Dental
Materials, 20(7): 677-686.
20. Teh, P. L., Mariatti, M., Akil, H. M., Yeoh, C. K., Seetharamu, K. N.,
Wagiman, A. N. R. & Beh, K. S. 2007. The properties of epoxy resin coated
silica fillers composites. Materials
Letters, 61(11-12): 2156-2158.
21. Moodley, V. K. (2007). The
Synthesis, Structure And Properties Of Polypropylene Nanocomposites. MSc., Durban
university of technology.
22. Rothon, R. N. (2003). Particulate-Filled Polymer Composites. In: ROTHON, R. N. (ed.) R.N. Rothon. Second Edition ed.
Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom: Rapra Technology
Limited.
23. Rashid, E. S. A., Ariffin, K.., Kooi, C. C. & Akil, H. M. (2009).
Preparation and properties of POSS/epoxy composites for electronic packaging
applications. Materials & Design,
30(1): 1-8.
24. Lee, J. H., Jang, Y. K., Hong, C. E., Kim, N. H., Li, P. & Lee, H. K. (2009).
Effect of carbon fillers on properties of polymer composite bipolar plates of
fuel cells. Journal of Power Sources,
193(2): 523-529.
25. Kuan, H.-C., Ma, C.-C. M., Chen, K. H. & Chen, S.-M. (2004).
Preparation, electrical, mechanical and thermal
properties of composite bipolar plate for a fuel cell. Journal of Power Sources, 134(1): 7-17.
26. Zhang, M., Zeng, H., Zhang, L., Lin, G. & Li, R. K. Y. (1993).
Fracture characteristics of discontinuous carbon fibre-reinforced PPS and PES-C
composites. Polymers and Polymer
Composites, 1: 357-365.
27. Allaoui, A., Bai, S., Cheng, H. M. & Bai, J. B. (2002). Mechanical and
electrical properties of a MWNT/epoxy composite. Composites Science and Technology, 62(15): 1993-1998.
28. Gojny, F. H. & Schulte, K. (2004). Functionalisation effect on the
thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Composites Science and Technology, 64: 2303-2308.
29. Kim, B. C., Park, S. W. & Lee, D. G. (2008). Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures, 86(1-3): 69-77.