Malaysian Journal of Analytical Sciences Vol 18 No 2
(2014): 337 343
peNILAIAN
RISIKO KANSER DARI SAMPEL TANIH DI SEKITAR KAWASAN PERINDUSTRIAN GEBENG, PAHANG
DAN SAMPEL AMANG DI PERAK
(Assessments
of Cancer Risk from Soil Samples in Gebeng Industrial Estate, Pahang and Amang
Samples in Perak)
Che Nor
Aniza Binti Che Zainul Bahri*, Khoo Kok Siong, Amran Ab. Majid,
Norafatin binti Khalid
Program Sains Nuklear, Jabatan Fizik Gunaan
Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor, Malaysia
*Corresponding author: anizazainul@gmail.com
Abstrak
Aktiviti
perindustrian seperti industri amang dan industri pemprosesan nadir bumi
menyumbang kepada risiko radiologi terhadap kesihatan manusia dan alam sekitar.
Aktiviti- aktiviti ini boleh meningkatkan keradioaktifan tabii (NORM) yang
signifikan dalam persekitaran. Tujuan kajian ini dijalankan adalah untuk
menentukan kepekatan aktiviti Torium-232 (232Th), Uranium-238 (238U)
dan Kalium-40 (40K) dalam sampel tanih di sekitar Kawasan
Perindustrian Gebeng, Pahang dan sampel ilmenit dan monazit dari tiga buah
kilang pemprosesan amang di Perak dengan menggunakan spektrometri sinar gama.
Seterusnya kadar dos terserap sinar gama, dos tahunan dan risiko kanser
ditentukan. Kepekatan aktiviti 232Th, 238U dan 40K
dalam sampel tanih di Gebeng masing - masing telah ditemui dalam julat 14.3
102.4, 23.8 81.3 dan 73.3 - 451 Bq kg-1. Manakala julat kepekatan
aktiviti 232Th, 238U dan 40K bagi sampel
ilmenit dan monazit adalah masing - masing 259 - 166500, 194 - 28750 dan 26.4 -
11991 Bq kg-1. Julat kadar dos terserap sinar gama di Kawasan
Perindustrian Gebeng adalah 22 - 108 nGy j-1 dan di
kawasan pemprosesan amang adalah 390 - 6650 nGy j-1. Dos
tahunan di Kawasan Perindustrian Gebeng dan kawasan pemprosesan amang masing -
masing adalah 0.02 0.15 dan 0.47 - 68
mSv tahun-1. Kajian menunjukan risiko kanser di Kawasan
Perindustrian Gebeng adalah 4 per sejuta orang dan 3702 per sejuta orang di kawasan pemprosesan amang. Kepekatan
aktiviti dalam tanih di Kawasan Perindustrian Gebeng berada dalam julat yang
dilaporkan oleh UNSCEAR 2000 di Malaysia. Kepekatan aktiviti, kadar dos
terserap sinar gama, dos tahunan dan risiko kanser di Kawasan Perindustrian
Gebeng lebih rendah daripada kawasan pemprosesan amang kerana kawasan
pemprosesan amang mempunyai aktiviti yang tinggi di sekitar kawasannya
disebabkan kehadiran monazit yang tinggi dengan torium. Kajian ini mencadangkan
pemantauan dos sekitaran perlu dilakukan secara berterusan untuk menjamin kelestarian
manusia dan alam sekitar.
Kata kunci: kepekatan aktiviti, risiko kanser, amang, keradioaktifan tabii
Abstract
Industrial
activities such as the tin tailings and rare earth processing contribute to
radiological risk to human health and environment. Those activities can
accumulate the naturally occurring radioactive materials (NORM) with
significant concentration in the environment. The aims of this study was to
determine the activities concentration of Thorium -232 ( 232Th ),
Uranium -238 ( 238U ) and Potassium - 40 ( 40K ) in soil
samples around the Gebeng Industrial Estate, Pahang and in samples of ilmenite
and monazite from three tin tailings processing plants in Perak using gamma ray
spectrometry. The terrestrial gamma dose rate, the annual dose and cancer risk
were also determined. The activities concentration of 232Th, 238U
and 40K in the Gebeng soil samples were found in the range of 14.3 -
102.4, 23.8 - 81.3 and 73.3 - 451 Bq kg-1, respectively. While the
activities concentration of 232Th, 238U and 40K
for ilmenite and monazite samples were in the range of 259 - 166500, 194 -
28750 and 26.4 - 11991 Bq kg-1, respectively. The range terrestrial
gamma dose rate at the Gebeng Industrial Estate was 22 - 108 nGy h-1
and the tin tailings processing plants was 390 6650 nGy h-1.
Whereas the annual dose at the Gebeng Industrial Estate and tin tailings
processing plants were 0.02 0.15 and 0.47 - 68 mSv y-1,
respectively. The study showed that the cancer risk in the Gebeng industrial
area were 4 peoples per million and 3702 peoples per million in the tin
tailings processing plants. The activity concentration of soil from industrial
area reported by UNSCEAR 2000 was in range of the Malaysia soil background. The
activity concentration, the terrestrial gamma dose rate, the annual dose and
the cancer risk were lower in the industrial area compared to tin tailings
processing plants due to the high activity among the tin tailings processing
area due to the high content of thorium in monazite. This study is recommended
to monitor the environmental dose continuously in order to ensure the
sustainability of human and environment.to ensure the sustainability of human
and environment.
Keywords:
activity concentration, cancer risk, amang, natural
radionuclide
References
1.
UNSCEAR (2000). Exposures from natural radiation sources. United Nations
Scientific Committee on the Effects of Atomic Radiation.Report to General Assembly, With Annexes.New York: United Nations.
2.
International
Atomic Energy Agency (IAEA). 1987. IAEA handbook on nuclear activation data. Technical series report No. 273.
3.
Krmar,
M., J.Sliviska, E. Varga, I. Bikit and M. Veskovic.(2009). Correlations of
natural radionuclides in sediment from Danube. Journal of Geochemical
Exploration., 100(1): 20-24.
4.
Ramli,
A. T. (2007). Kajian Radiologi ke Atas Kesan Amang di Negeri Perak.Laporan
akhir Projek Penyelidikan Vot 68878.Universiti Teknologi Malaysia dan Lembaga
Perlesenan Tenaga Atom.
5.
Willson, M.J. (1993). Anthropogenic and
naturally occurring radioactive materials detected on radiological survey of
properties in Monticello, Utah. EnvironmentalHealth Physics ; 26th midyear
topical meeting, 24-28 Januari : 564. Idaho : Coeur dAlene.
6.
IAEA. (2004).
Soil Sampling for Environmental
Contaminants. IAEA- TECDOC- 1415:
20- 26.
Vienna: International Atomic Energy Agency.
7.
Yasir, M.S., Majid, A. Ab., Ibrahim, F., Tap,
M.S.Q & Abidin, M.R.Z. (2006).
Analisis 238U, 232Th, 226Ra dan 40K
dalam sampel amang, tanah dan air di Dengkil, Selangor menggunakan spektrometri
sinar gama .Malaysia Journal of Analytical Sciences.10 (1) : 35- 40.
8.
Selvaskarapandian,
S., Sivakumar, R., Manikandan, N.M., Meenakshisundaram, V., Raghunanth, V.M.
& Gajendran,V. (2000). Natural
Radionuclide Distribution in Soil of Gudalore India. Applied Radiation and Isotopes 52 : 299- 306.
9.
UNSCEAR.
(1987). Ionizing radiation. Sources, effects and risk of ionizing radiation.United Nations
Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly. United Nation, New York.
10.
International
Commission Radiation Protection (ICRP) (2007). Recommendations of the ICRP:
Annals of the ICRP volume 37/2-4.
11.
Nasirian,
M., Bahari, I. & Abdullah, P. (2008). Assessment of Natural Radioactivity
in water and sediment from amang (Tin Tailing) processing Ponds. Malaysian
Journal of Analytical Sciences 12 (1): 150 - 159.
12.
Australian
Radiation Protection and Nuclear Safety Agency (ARPANSA). (2005). Naturally
Occurring Radioactive Materials (NORM) in Australian Industries Review of
Current inventories and Future Generation. EnviroRad Services Pty. Ltd.
13.
Robert
Mikkelson. (2008). Managing Potassium for Organic Production. Vol. 92. No. 2.
Page 26 29. Better Corporation
14.
Mohanty,
A. K., Sangupta, D., Das, S. K., Saha, S. K., Van, K.V, (2004). Natural
radioactivity and radiation exposure in high background area at Chhatraputra
beach placer deposit of Orissa India. Journal of Environmental Radioactive
75(1):15-33.
15.
Abbaspour,
M., Moattar, F., Okhovatian, A. & Kharrat, M.S. (2010). Relationship of
soil terrestrial radionuclide concentrations and the excess life time cancer
risk in Newstern Mazandran Province, Iran. Radiation
Protection Dosimetry 142: 265 - 272.
16.
Taskin,
H., M. Karavus P. Ay, A. Topuzoglu, S. Hindiroglu and G. Karahan.(2009).
Radionuclides concentration in soil and lifetime cancer risk due to the gamma
radioactivity in Kirklareli, Turkey. Journal of Environmental Radioactivity
70: 223-235.
17.
Kapdan,
E., Varinlioglu, A., and Karahan, G. (2011).Radioactive Levels and Health Risk
due to Radionuclides in the Soil of Yolova, Northwestern Turkey International Journal Environment. 5
(4): 837-846.
18.
IAEA
(2009). Radiation Workers Handbook:
Radiation Control in the Mining & Mineral Processing Industry. Vienna:
International Atomic Energy Agency.
19.
International
Commission Radiation Protection (ICRP). 1990. Recommendations of the ICRP: ICRP
Publication 60. Pergamon Press. New York.
20.
Jibiri.
N. N. (2001). Assessment of Heaith Risk Levels Associated with terrestrial
gamma radiation dose rates in Nigeria. Environment International 27
(2001): 21- 26.