Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 321 – 328

 

 

 

METHYL ESTER (BIODESEL) PRODUCTION FROM WASTE COOKING VEGETABLE OIL BY MICROWAVE IRRADIATION

 

(Penghasilan Metil Ester (Biodesel) Daripada Sisa Minyak Sayuran oleh Penyinaran Gelombang Mikro)

 

M.S.Khatun*, M.A. Khatun, M.Z.H. Khan, M. Debnath

 

Department of Chemical Engineering,

Jessore University of Science & Technology, Jessore- 7408, Bangladesh.

 

*Corresponding author: sheauly.jstu@gmail.com

 

 

Abstract

In this study we tried to develop, test and optimize a batch microwave system using waste cooking vegetable oil (WCVO) that was used as biodiesel feedstock. Two catalysts, sodium hydroxide (NaOH) and potassium hydroxide (KOH) were tested in this study. Transesterification reactions between oil and methanol were carried out in presence of microwaves. It was observed that by using of microwaves, the reaction times were drastically reduced. As high as 99.5% conversions could be achieved for 0.5% KOH concentration. Moreover, quality analysis of biodiesels according to international standards was performed and the samples were found to meet the necessary specifications.

 

Keywords: methyl ester biodiesel; waste cooking vegetable oil; microwave irradiation; biofuel

 

Abstrak

Dalam kajian ini penulis cuba membangunkan, menguji dan mengoptimumkan suatu sistem penghasilan bahan mental biodesel secara gelombang mikro menggunakan sisa minyak sayuran memasak sisa (WCVO). Dua pemangkin, natrium hidroksida (NaOH) dan kalium hidroksida (KOH) telah diuji dalam kajian ini. Tindakbalas transesterifikasi antara minyak dan metanol telah dijalankan mengunakan gelombang mikro. Kajian mendapati bahawa dengan menggunakan gelombang mikro, masa tindakbalas berkurangan secara drastik. Penukaran boleh dicapai sehingga 95% bagi kepekatan KOH 0.5%. Selain itu, analisis kualiti biodiesel mengikut piawaian antarabangsa telah dilakukan dan sampel didapati memenuhi spesifikasi yang diperlukan.

 

Kata kunci: biodiesel metil ester; sisa minyak masak sayuran; penyinaran gelombang mikro; biofuel

 

References

1.       Knoth, G., Gerpen, J. V., Krahl, J. (2005). The Biodisel Handbook. American oil chemists’ society, Urbana IL.

2.       Koonin, S.E. (2006). Properties on biofuel and biomaterials. Science, 311: 435.

3.       Lopez, D.E.,Goodwin, J. G., Bruce, D. A. and Lotero, E. (2005). Transesterification of triacetin with Alcohol on solid Acid and Base Catalysts. Applied Catalysis A: General, 295(2) : 97-105.

4.       Zhang, Y.,   Dube, D. A., McLean, D. D. and  Kates, M. (2003). Biodiesel Production from Waste Cooking Oil: Proc-ess Design and Technological Assessment. Bioresource Technology, 89 (1): 1-16.

5.       Marchetti, J. M., Miguel, V. U. and Errazu, A. F. (2007). Hetero-geneous Esterification of Oil with High Amount of Free Fatty Acids. Fuel, 86(5): 906-910.

6.       Dorado, M.P., Ballesteros, E., López, F. J. and Mittelbach, M. (2004). Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energ. Fuel, 18(1): 77-83.

7.       Lin, Y.C., Lee, W. J. and Hou, H.C. (2006). PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmos. Environ., V 40(21): 3930-3940.

8.       Lin, Y.C., Lee, W. J., Wu,T.S. and Wang, C. T. (2006). Comparison of PAH and regulated harmful matter emissions from biodiesel blends and paraffinic fuel blends on engine accumulated mileage test. Fuel,  85(17-18): 2516-2523.

9.       Lin, Y.C.,  Lee, W. J., Chao, H. R., Wang,  S. L., Tsou,  T. C., Chang-Chien, G.P. and Tsai, P. J. (2008). Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends. Environ. Sci. Technol., 42(10): 3849-3855.

10.    Lin, Y.C., Tsai, C. H., Yang, C. R.,  Wu, C. H., Wuand, T. Y. and  Chang-Chien, G. P. (2008). Effects on aerosol size distribution of polycyclic aromatic hydrocarbons from the heavy-duty diesel generator fueled with feedstock palm-biodiesel blends.  Atmos. Environ., 42(27): 6679-6688.

11.    Lin, Y.C., Liu, S.H., Chen, Y. M. and Wu, T.Y. (2011).  A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/ dibenzofuran emissions from heavy-duty diesel engines. J. Hazard. Mater, 185(1): 1-7.

12.    Lin, Y.C.,  Hsu, K.H. and  Chen, C.B. (2011). Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends. Energy, 36(1): 241-248.

13.    Zhang, Y., Dube, M. A., McLean, D. D. and Kates, M. (2003). Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technol., 90(3): 229-240.

14.    Haas, M.J., McAloon, A. J., Yee, W.C. and Foglia, T. A. (2006). A process model to estimate biodiesel production costs. Bioresource Technol., 97(4): 671-678.

15.    Fukuda, H., Kondo, A. and Noda, H. (2001). Biodiesel fuel production by transesterification of oils.  J. Biosci. Bioeng., 92(5): 405-416.

16.    Dmytryshyn, S.L., Dalai, A. K., Chaudhari, S.T., Mishra, H. K. and Reaney, M. J. (2004). Synthesis and characterization of vegetable oil derived esters: Evaluation for their diesel additive properties. Bioresource Technol., 92(1): 55-64.

17.    Saifuddin, N. and Chua, K.H. (2004). Production of ethyl ester (biodiesel) from used frying oil: Optimization of transesterification process using microwave irradiation. Malaysian J. Chem., 6(1): 77-82.

18.    Vicente, G., Martinez, M. and Aracil, J. (2004). Integrated biodiesel production: A comparison of different homogeneous catalysts systems. Bioresource Technol., 92(3): 297-305.

19.    Carslaw, H.S. and Jaeger, J.C. (1959). Conduction of Heat in Solids.  Oxford University Press, Oxford, UK.

20.    Metaxas, A.C. (1996). Foundations of Electro-heat. Wiley, New York.

21.    Leadbeater, N. E. and Stencel, L.M. (2006). Fast, easy preparation of biodiesel using microwave heating. Energ. Fuel., 20(5): 2281-2283.

22.    Sandro, L. B.,  Savio, E. O. M., Stanlei, I. K., Gabriela, R. H., Adriano, C. M. B.  and Miguel, J. D. (2013). Microwave irradiation aiding ethanolysis of waste cooking oil. European International Journal of Science and Technology., 2(2): 211 – 222.

23.    Ma, F. and Hanna, M.A. (1999). Biodiesel production. A Review. Bioresour. Technol., 70 : 1-15.

24.    Morshed, M.,  Ferdous, K.,  Khan, M. and Mazumder, R. (2011). Rubber seed oil as a potential source for biodiesel production in Bangladesh.  Fuel, 90 : 2981-2986.

25.    Joshi, R.M., Pegg, M. J. (2007). Flow properties of biodiesel fuel blends at low temperatures. Fuel, 86: 143-151.

26.    Gedye, R.N., Rank, W. and  Westaway, K.C. (1991). The rapid synthesis of organic compounds in microwave ovens.  Canadian Journal of Chemistry, 69(4): 706–711.

27.    Azcan, N. and Yilmaz, O. F. (2013). Microwave assisted transesterification of waste frying oil and concentrate methyl ester content of biodiesel by molecular distillation. Fuel,  104: 614–619.

28.    Hossain, A.B. and Boyce, A.N. (2009). Biodiesel production from waste sunflower cooking oil as an environmental recycling process and renewable energy. Bulgarian journal of agricultural science, 15(4):  312-317.

29.    Freedman, B., Prude, E. H. and Mounts, T. L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils.  J. Am Oil Chem. Soc., 61(10): 1638-1643.

30.    Arzamendia G., Campoa, I.,  Arguinarenaa, E., Sanchezb, M., Montesb, M. and Gandia, L. M. (2007). Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with Homogeneous NaOH. Chemical Engineering Journal, 134: 123-130.

 

Previous                    Content                    Next