Malaysian
Journal of Analytical Sciences Vol 18 No 2 (2014): 234 – 244
PENGGUNAAN
KAEDAH KEMOMETRIK BAGI MENENTUKAN KUALITI MINYAK KELAPA SAWIT, MINYAK JAGUNG
DAN MINYAK KELAPA SEGAR DAN TERPAKAI
(Utilization
of Chemometric Technique to Determine the Quality of Fresh and Used Palm, Corn
and Coconut Oil)
Hamizah Mat Agil1,
Mohd Zuli Jaafar2, M. Suzeren Jamil1, Azwan Mat Lazim1*
1School of Chemical Sciences and Food Technology,
Faculty
of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2Universiti Teknologi MARA Kampus Kuala Pilah, 72002
Kuala Pilah, Negeri Sembilan, Malaysia
*Corresponding author: azwanlazim@ukm.edu.my
Abstrak
Kajian ini dijalankan untuk mengkaji
kemerosotan kualiti minyak sebelum dan selepas digoreng. Sebanyak 12 sampel
minyak daripada sumber yang berlainan iaitu daripada minyak kelapa sawit,
minyak jagung dan minyak kelapa telah digunakan. Proses pengorengan diulang
sebanyak empat kali pada suhu 180 oC bertujuan untuk mengecam
sebarang perubahan yang berlaku pada suhu yang tinggi. Sebanyak tiga parameter
utama dikaji bagi menentukan kualiti minyak iaitu nilai peroksida, nilai iodin
dan nilai asid. Kaedah kemometrik yang berdasarkan pencaman corak digunakan
sebagai kaedah alternatif untuk penentuan kualiti minyak dalam kajian ini
berdasarkan serapan FTIR pada rantau 4000-700 cm-1. Analisis data
dijalankan dengan menggunakan kaedah PCA dan PLS dalam permodelan Matlab. PCA
memberikan pengkelasan data mengikut jenis minyak manakala PLS memberikan
penentuan kualiti terhadap tiga parameter yang dikaji. Bagi pengkelasan minyak
segar PC1 mempunyai nilai peratus varian 70 % manakala PC2 mempunyai nilai
peratus varian 15 %. Bagi minyak goreng pula, PC1 mempunyai nilai peratus
varian 57 % dan PC2 mempunyai nilai peratus varian 25 %. Menerusi PLS, model nilai iodin bagi pembolehubah terpilih berdasarkan
korelasi, R2CV pada > 0.984 merupakan model yang terbaik untuk
minyak segar. Manakala model bagi nilai peroksida bagi pemboleubah terpilih
berdasarkan korelasi, R2CV pada > 0.7423 untuk minyak goreng adalah model terbaik.
Kata
kunci: minyak
masak, kemometik, nilai peroksida, nilai iodin dan nilai asid
Abstract
This study was conducted to evaluate the
quality of natural oil and the deterioration of frying oil. A total of 12
different oil samples from palm oil, corn oil and coconut oil were used. The
frying process was repeated four times at 180 oC in order to observe
the stability of the oil towards oxidation. Three main parameters have been
studied to determine oil qualities which were peroxide value, iodine value and
acid value. This study emphasized on the usage of FTIR in the range of 4000-700
cm-1. Alternatively,
the chemometrics method based on pattern recognition has been used to
determination the oil quality. Data analysis were conducted by using PCA and
PLS method in the Matlab modeling. The PCA provided data classification
according to types of oil while PLS predicted the oil quality of the parameters
studied. For the classification of pure oil, the variance for PC1 was 70% while
PC2 was 15 %. For the fried/used oil, PC1 gave 57 % while PC2 gave 25 %. By using PLS, the iodine the best model for pure oils value
model variable based on correlation with R2CV > 0.984. Whereas,
the peroxide value model for fried/used oils, was the best obtained R2CV > 0.7423.
Keywords: cooking oil,
chemometric, peroxide value, iodine value and acid value
References
1. Aderolu, A.Z.
& Akinremi, O.A. 2009. Dietary effacts of coconut and peanut oil in
improving biochemical characteristic of Clarias
gariepinus Juvenile. Turkish Journal
of Fisheries and Aquatic Sciences.
9: 105-110.
2. Arrifin, D.
& Fairus, H. 2002. Introduction to
Malaysian Palm Oil Industry. Palm Oil Familiarization Programme 2002. Kuala
Lumpur. POFP 2002: 1-15.
3. Azwani S. 2004.
Penggunaan perceptron pelbagai lapisan untuk penentuan kualiti minyak sawit berdasarkan pencaman corak. Thesis Ijazah
Sarjana Sains. Bangi: Universiti Kebangsaan Malaysia.
4. Brereton R.G.
2003. Applied Chemometrics for Scientists.
John Wiley & Sons, Ltd. hlmn 183-315.
5. Brereton R. G.
2009. Chemometrics for Pattern
Recognition. John Wiley & Sons, Ltd.
6. Bothell. 1996.
Chemometrics applications overview. Infometric, Inc. http://www.infometrix.com/apps/14-0296_chromatogao.pdf [8 Mei 2012]
7. Brown S. 2011. http://www.infometrix.com/chemometrics/chemometrics.html
[12 November 2011].
8. Che Man, Y.B.,
Setiowatty, G. & Van De Voort, F.R. 1999. Determination of iodine value of
palm oil by fourier transform infrared spectroscopy. Journal Am. Oil. Chem. Soc. Press 76(6):
693-699.
9. Che Man, Y.B. 2004.
Syarahan Inaugural. Oils and fats analysis-Recent advances and future
prospects. ISBN 967-960-171-4. Universiti Putra Malaysia.
10. Choo, Y.M. &
Yap, S.C. 1992. The role of free radicals in the properties of palm oil;
chemical basic atherosclerosis. PORIM Annual
Research Report Project CT 187087.51.
11. Choo, Y.M. 1994.
Palm oil carotenoids. Food &
Nutrition Bulletin 15: 1-14.
12. Choo, Y.M. 1999.
Speciality products: carotenoids. Advance
in Oil Palm Research. hlm. 34-52. Kuala Lumpur: PORIM.
13. Choe, E. &
Min, D.B. 2007. Chemistry of deep-fat frying oils. Journal of Food Science. 72(5): 78-85.
14. Elias, C. &
Yvonne, T. 2005. Coconut oil Bailey’s industrial oil and fat products. John Wiley & Sons. Inc. Vol 6
15. Fulop, A., Krar,
M. & Hancsok, J. 2008. Application of NIR spectroscopy by determination of
quality properties of vegetable oils and their derivatives. Hungarian Journal of Industrial Chemistry
Veszprem 36: 1-2
16. Gee, P.T. 1995.
Iodine value determination by FTIR spectroscopy. Mal. Oil Sci. Tech. 4:
182-185.
17. Gunstone, F. D.
2004. The Chemistry of Oils and Fats.
Source, composition, properties and uses.
18. Ghidurus, M.,
Turtoi, M., Boskou, G., Niculita, P. & Stan, V. 2010. Nutritional and
health aspects related to frying (1). Romanian Biotechnological Letters 15,
No 6
19. Hong, Y.,
Joseph, I. & Manish, M.P. 2004. Discrimination analysis of edible oils and
fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry 93: 25-32.
20. Jing, D.,
Deguang, W., Linfang, H., Shilin, C. & Minjian, Q. 2011. Application of
chemometrics in quality evolution of
medicinal plants. Journal of Medicine Plants Research. 5(17): 4001-4008.
21. Jumat, S., Said,
M., Ramli, S. & Azwani, S. 2006. Oils and Fats Analysis. Ed 1.
Bangi: Universiti Kebangsaan Malaysia.
22. Kamaliah, M.
& Norsaadah, A.R. 1997. Kaedah spektroskopi dalam pengenalpastian sebatian
organik. Kuala Lumpur: Penerbit Universiti Malaya.
23. Karoui, K.,
Downey, G. & Blecker, C. 2010. Mid-infrared spectroscopy coupled with
chemometrics: A tool for the analysis of intact food system and the exploration
of their molecule structure. Chem Rev.
110(10): 6144-6168.
24. Kuntom, A. 1990.
Oxidation and palm oil. PORIM Bulletin
20: 32-40
25. Lawson, H. 1995.
Deep fat frying. Chapter 2: Food Oil and
Fats: Technology, Utilization and
Nutrition. New York: Champan & Hall. Page 6-14
26. March, J.G.,
Simonet, B.M. & Grases, F. 1999. Determination of phytic acid by catalytic
fluorimetric. Analyst 124: 897-900
27. McMurry, J.
2004. Organic Chemistry. Singapore: Thomson Learning Inc
28. Miller, J.N.
& Miller, J.C. 2000. Statistic and chemometrics for analytical chemistry.
Ed. Ke-4. England. Pearson Education Limited.
29. Moh, M.H. &
Tang, T.S. 1999. A review on the quantitative analysis of fats and oils using
FTIR. PORIM Bulletin. 41: 30-37
30. Muzik, B.,
Lendi, B., Molina-Diaz, A. & Ayora-Canada, M.J. 2005. Direct monitoring of lipid oxidation in edible oils
by Fourier transform Roman spectroscopy chemistry physics of lipid. 134:
173-182.
31. Rethinam, P.
2003. Health and Nutritional Aspects of Coconut
Oil. Asian and Pacific Coconut Comunity. Jakarta: 1-7.
32. Rohaya, M. &
Ma, A.N. 2001. Effect of temperature on the quality of fresh crude palm oil at
different stages of processing. Palm Oil
Bulletin 43: 31-37.
33. Rohman, A.,
Ismail, A., Che Man, Y.B. & Hashim, A. 2011. Monitoring the oxidative
stability of virgin coconut oils during oven test using chemical indexes and
FTIR spectroscopy. International Food Research Journal. 18: 303-310.
34. Rohman, A. &
Che Man, Y.B. 2011. Quantification and classification of corn and sunflower
oils as adulterations in olive oil using chemometrics and FTIR spectra. Scientific World Journal. Article ID
250795.
35. Sarfaraz, A. M.
2010. Analytical characterization & quality evaluation of poultry feed
commercially available in Sindh with emphasis on poultry feed oil. Thesis Ph.D.
Pakistan: University of Sindh, Jamshoro
36. Serjouie, A.,
Tan, C. P., Mirhosseini, H. & Che Man Y.B. 2010. Effect of vegetable
based-oil blends on physicochemical properties of oils during deep-fat frying. American Journal of Food Technology. 5:
310-323
37. Sivakesava, S.
& Irudayaraj, J. 2001. Detection of Inverted beet sugar adulteration of
honey by FTIR spectroscopy. Journal of
the Science of Food and Agriculture. 81: 683-690.
38. Stavros L. 2009.
Advance in Deep-Fat Frying of Foods. Chapter 4: Quality of frying oil. Taylor
& Francis Group. Page 59-74.
39. Sunisa, W.,
Warapong, U., Sunisa, S., Saowaluck, J. & Saowakan W. 2011. Quality changes
of chicken frying oil as affected of frying conditions. International
Research Journal 18: 615-620.
40. Tang, T.S. 1991.
Palm kernel and palm kernel oil quality today. PORIM Bulletin. Vol 23: 15-31.
41. The Healthy
Benefits of Coconut Oil. Bioriginal Food
& Science Corp.
www.bioriginal.com/services/files/healthbenefitsofcoconutoil.pdf [25 December
2011]
42. Van de Voort,
F.R., Ismail, A.A., Sedman, J., Dubois, J. & Nicodemo, T. 1994. The
determination of peroxide value by FTIR. Journal
Am. Oil Chem. Soc 71: 921-926
43. Vlachos, N.,
Skopelitis, Y., Psaroudaki, M., Konstantinidau, V., Chatzilazarou, A. &
Tegou, E. 2006. Application of fourier transform-infrared spectroscopy to
edible oils. Analytica Chimica Acta. Vol 573-574: 459-465
44. Yahya, S.A.D.,
Al-Ghouti & Nidaa S. 2011. Determination of frying quality of vegetable
oils used for preparing falafel using infrared spectroscopy and multivariate
calibration. Journal Food Anal. Methods.
4: 540-549
45. Yingxu, Z. 2010.
Exploring the capabilities of gas chromatography and liquid chromatography
single and random mass spectrometry for discriminating and characterizing
marine oils by using chemometric tools. Thesis Phd. University of Bergen.
46. Zuli, J. 2011.
Chemometric and pattern recognition methods with applications to environmental
and quantitative structure activity relationship studies. Thesis Phd.
University of Bristol.