Malaysian
Journal of Analytical Sciences Vol 18 No 1 (2014): 58 – 67
PHOSPHORYLATION
OF GELATINE AND
CHITOSAN AS AN EXCIPIENT FOR ASIATICOSIDE NANOFIBERS
(Pemfosforilan
Gelatin dan Kitosan Sebagai Eksipien Bagi Penyediaan Nanofiber Asiatikosida)
Susana Elya Sudrajat1*,
Khairurrijal2, Puspa DN Lotulung3, Effionora Anwar1
1Faculty
of Pharmacy,
Universitas Indonesia, Depok, Indonesia
2Department
of Physics,
Institut Teknologi Bandung, Indonesia
3Department
of Chemistry,
Lembaga Ilmu Pengetahuan Indonesia,
Serpong, Indonesia
*Corresponding author: susanasudrajat_09@yahoo.com
Abstract
Asiaticoside has
been widely used and is still studied for topical treatment of wounds,
increased fibroblasts and collagen production are noted at the site of injury.
Base on getting the optimal effect of wounds’ treatment, drug must be released and
absorbed from the carrier/drug delivery media. In this research, nanofibers
preparation is made using the model drug asiaticoside. The result indicated
that gelatine-chitosan phosphorylation
can be used as an excipient for asiaticoside nanofibers. In this research 3
formulas with varying concentrations of phosphorus are used. The release of
asiaticoside was examined by dissolution in vitro. It was measured by high
performance liquid chromatography (HPLC) and nanofibers morphology was measured
by scanning electron microscopy (SEM). Phosphorylation chitosan tested by infra
red spectrophotometry (FTIR) at wave numbers 1271, 1213, 1157, 1085, 1012 and
954 cm-1 where as the phosphorylation of gelatine at 1257, 1026 and
900 cm-1 . The characterization result indicates that the formula C
was contains sodium tripolyphosphate
0.5% is the best with the release of asiaticoside 51% for 72 hours,
compared to formula A(68%) and the formula B(62%). The percentage asiaticoside
from nanofibers preparation is between 90%-100%.
Keywords:
asiaticoside, nanofibers, phosphorylation, sodium tripolyphosphate,
electrospinning, dissolution
References
1.
Lu, L., Ying, K., Wei, S.,
Fang, Y., Liu, Y., Lin, H., Ma, L., Mao, Y., (2004). Asiaticoside induction for
cell-cycle progression, proliferation and collagen synthesis in human dermal
fibroblasts. International Journal
of Dermatology, 43(11): 801-807.
2.
Sikareepaisan,
P., Suksamrarn, A., Supaphol, P. (2008). Electrospun
Gelatin Fiber Mats Containing a Herbal-Centella
asiatica- Extract and Release Characteristic of Asiaticoside. Nanotechnology, 19(1):
015102.
3.
Boateng, JS., Matthews, K.,
Steven, HE., Eccleston, GM., (2008). Wound Healing Dressings and Drug Delivery
Systems. Journal of Pharmaceutical
Sciences, 97(8): 2892-2923
4.
Murugan, R., Ramakrishna,
S., (2007). Design Strategies of Tissue Engineering Scaffolds with Controlled
Fiber Orientation. Tissue Engineering,13(8):
1845-1866.
5.
Chew,
SY., Wen, Y., Dzenis, Y., Leong, Y., (2006). The Role of Electrospinning in the
Emerging Field of Nanomedicine: Current
Pharmaceutical Design, 12(36): 4751-4770
6.
Choktaweesap, N., Arayanarakul, K.,
Aht-ong, D., Meechaisue, C., Supaphol, P. (2007). Electrospun Gelatin Fibers:
Effect of Solvent System on Morphology and Fiber Diameters. Polymer Journal, 39(6): 622-631.
7.
Vrieze, S., Westbroek,
P., Camp,T., Langenhove, L. (2007). Electrospinning of Chitosan Nanofibrous
Structures: Feasibility Study. Journal Materials Sciences, 42: 8029-8034.
8.
Javari, J., Emami, SH., Samadikuchaksaraei, A.,
Bahar, M A., Gorjipour, F. (2011). Electrospun Chitosan Gelatin Nanofiberous
Scaffold: Fabrication and In Vitro Evaluation. Bio-Medical Materials and Engineering, 21(2): 99-102.
9.
Amaral,
IF., Granja, PL., Barbosa, MA., (2005). Chemical modification of chitosan
by phosphorylation: J. Biomaterials Science
Polymer, 16(12): 1575–1593
10.
Pati, F., Datta, P., Chatterjee, J., Dhara, S.
(2010). Development of Chitosan-Tripolyphosphate Fiber for Biomedical Application. IEEE
Students' Technology Symposium,77-81
11.
Schiffman,
JD., Schauer, CL. (2007). One-Step Electrospinning of
Cross-Linked Chitosan Fibers: Biomacromolecules,
8(9): 2665-2667.
12.
Bhumkar,
Devika R., Varsha B. Pokharkar. (2006). Studies on effect of pH on
cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech,7 (2) Article 50.
13.
Khairurrijal ., Munir, MM., Saehana, S.,
Iskandar, F., Abdullah, M. (2009). Teknik pemintalan elektrik untuk pembuatan
nanoserat dari pemodelan hingga eksperimen. Jurnal
Nanosains & Nanoteknologi, edisi khusus.
14.
M. Pillai, CKS., Sharma, P. (2009).
Electrospinning of Chitin and Chitosan Nanofibres. Trends Biomater. Artif. Organs,
22(3): 179-201.
15.
Suwantong, O., Ruktanonchai, U.,
Supaphol, P. (2008). Electrospun cellulose acetate fiber mats containing
asiaticoside or Centella asiatica crude extract and the release characteristics
of asiaticoside. Polymer, 49(19):
4239–4247
16.
Berger, J., Mayer, JM., Felt, O.,
Peppas, NA., Gurny, R. (2004). Structure and interactions in covalently and
ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1): 19–34
17. Silverstein,
RM., Webster, FX., Kiemle, DJ., Spectrometric
identification of organic compounds, Wiley, America (2005): 417