Malaysian Journal of Analytical Sciences Vol 18 No 1 (2014): 58 – 67

 

 

 

PHOSPHORYLATION OF GELATINE AND CHITOSAN AS AN EXCIPIENT FOR ASIATICOSIDE NANOFIBERS

 

(Pemfosforilan Gelatin dan Kitosan Sebagai Eksipien Bagi Penyediaan Nanofiber Asiatikosida)

 

Susana Elya Sudrajat1*, Khairurrijal2, Puspa DN Lotulung3, Effionora Anwar1

 

1Faculty of Pharmacy,

Universitas Indonesia, Depok, Indonesia

2Department of Physics,

Institut Teknologi Bandung, Indonesia

3Department of Chemistry,

Lembaga Ilmu Pengetahuan Indonesia, Serpong, Indonesia

 

*Corresponding author: susanasudrajat_09@yahoo.com

 

 

Abstract

Asiaticoside has been widely used and is still studied for topical treatment of wounds, increased fibroblasts and collagen production are noted at the site of injury. Base on getting the optimal effect of wounds’ treatment, drug must be released and absorbed from the carrier/drug delivery media. In this research, nanofibers preparation is made using the model drug asiaticoside. The result indicated that gelatine-chitosan  phosphorylation can be used as an excipient for asiaticoside nanofibers. In this research 3 formulas with varying concentrations of phosphorus are used. The release of asiaticoside was examined by dissolution in vitro. It was measured by high performance liquid chromatography (HPLC) and nanofibers morphology was measured by scanning electron microscopy (SEM). Phosphorylation chitosan tested by infra red spectrophotometry (FTIR) at wave numbers 1271, 1213, 1157, 1085, 1012 and 954 cm-1 where as the phosphorylation of gelatine at 1257, 1026 and 900 cm-1 . The characterization result indicates that the formula C was contains sodium tripolyphosphate  0.5% is the best with the release of asiaticoside 51% for 72 hours, compared to formula A(68%) and the formula B(62%). The percentage asiaticoside from nanofibers preparation is between 90%-100%.

 

Keywords: asiaticoside, nanofibers, phosphorylation, sodium tripolyphosphate, electrospinning, dissolution

 

References

1.       Lu, L., Ying, K., Wei, S., Fang, Y., Liu, Y., Lin, H., Ma, L., Mao, Y., (2004). Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. International Journal of Dermatology, 43(11): 801-807.

2.       Sikareepaisan, P., Suksamrarn, A., Supaphol, P. (2008).  Electrospun Gelatin Fiber Mats Containing a Herbal-Centella asiatica- Extract and Release Characteristic of Asiaticoside. Nanotechnology, 19(1): 015102.

3.       Boateng, JS., Matthews, K., Steven, HE., Eccleston, GM., (2008). Wound Healing Dressings and Drug Delivery Systems. Journal of Pharmaceutical Sciences, 97(8): 2892-2923

4.       Murugan, R., Ramakrishna, S., (2007). Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation. Tissue Engineering,13(8): 1845-1866.

5.       Chew, SY., Wen, Y., Dzenis, Y., Leong, Y., (2006). The Role of Electrospinning in the Emerging Field of Nanomedicine: Current Pharmaceutical Design, 12(36): 4751-4770

6.       Choktaweesap, N., Arayanarakul, K., Aht-ong, D., Meechaisue, C., Supaphol, P. (2007). Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters. Polymer Journal, 39(6): 622-631.

7.       Vrieze, S., Westbroek, P., Camp,T., Langenhove, L. (2007). Electrospinning of Chitosan Nanofibrous Structures: Feasibility Study. Journal Materials Sciences, 42: 8029-8034.

8.       Javari, J., Emami, SH., Samadikuchaksaraei, A., Bahar, M A., Gorjipour, F. (2011). Electrospun Chitosan Gelatin Nanofiberous Scaffold: Fabrication and In Vitro Evaluation. Bio-Medical Materials and Engineering, 21(2): 99-102.

9.        Amaral, IF., Granja, PL., Barbosa, MA., (2005). Chemical modification of chitosan by phosphorylation: J. Biomaterials Science Polymer, 16(12): 1575–1593

10.     Pati, F., Datta, P., Chatterjee, J., Dhara, S. (2010). Development of Chitosan-Tripolyphosphate  Fiber for Biomedical Application. IEEE Students' Technology Symposium,77-81

11.     Schiffman, JD., Schauer, CL. (2007). One-Step Electrospinning of Cross-Linked Chitosan Fibers: Biomacromolecules, 8(9): 2665-2667.

12.     Bhumkar, Devika R., Varsha B. Pokharkar. (2006). Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech,7 (2) Article 50.

13.     Khairurrijal ., Munir, MM., Saehana, S., Iskandar, F., Abdullah, M. (2009). Teknik pemintalan elektrik untuk pembuatan nanoserat dari pemodelan hingga eksperimen. Jurnal Nanosains & Nanoteknologi, edisi khusus.

14.     M. Pillai, CKS., Sharma, P. (2009). Electrospinning of Chitin and Chitosan Nanofibres. Trends Biomater. Artif. Organs, 22(3): 179-201.

15.     Suwantong, O., Ruktanonchai, U., Supaphol, P. (2008). Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer, 49(19): 4239–4247 

16.     Berger, J., Mayer, JM., Felt, O., Peppas, NA., Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1): 19–34

17.     Silverstein, RM., Webster, FX., Kiemle, DJ., Spectrometric identification of organic compounds, Wiley, America (2005): 417

 

Previous                    Content                    Next