Malaysian Journal of Analytical Sciences Vol 18 No 1 (2014): 140 – 147
Penentuan TABURAN HARIAN
Levoglukosan Di Udara Secara Kolorimetri
(Determination
of Levoglucosan Diurnal Pattern in Air by Colorimetric Method)
Mohd Zaidi Mat
Satar1, Mohd Talib Latif2, Mohamed Rozali Othman1*
1Pusat Pengajian Sains Kimia dan Teknologi Makanan,
2Pusat Pengajian Sains Sekitaran dan Sumber Alam,
Fakulti
Sains dan Teknologi,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
*Corresponding author: rozali@ukm.my
Abstrak
Levoglukosan (1,
6-anhidro-β-D-gukopiranosa) berpotensi dijadikan sebagai pengesan spesifik
bagi partikel yang terbebas daripada pembakaran biojisim disebabkan
kestabilannya di atmosfera serta wujud dalam komposisi yang banyak. Kaedah yang
tepat bagi penentuan kandungan levoglukosan di udara adalah penting bagi mengkaji pelbagai kesan levoglukosan
terhadap atmosfera. Kajian ini bertujuan mengkaji dan membangunkan satu kaedah
pensampelan optimum yang berpotensi dalam menyerap kandungan maksimum
levoglukosan yang hadir di udara. Pensampelan udara dijalankan dengan
menggunakan sistem penjerap udara yang mengandungi air nyahion. Sampel yang
diperolehi kemudiaanya dianalisis menggunakan kaedah kolorimetri Anthrone-Asid
Sulfurik di mana serapan analit
diukur menggunakan spektrometer ultra lembayung-nampak pada panjang gelombang
620 nm.
Hasil kajian menunjukkan bahawa keadaan
yang optimum bagi pensampelan levoglukosan di
udara adalah
dengan menggunakan air nyahion sebagai larutan penyerap pada kadar alir 1.0
L/min. Kepekatan levoglukosan didapati tidak dipengaruhi oleh
tempoh penyimpanan menunjukkan levoglukosan di dalam larutan penyerap adalah stabil. Penutupan tiub penyerap semasa pensampelan didapati mampu mempengaruhi
kepekatan levoglukosan di udara.
Kata
kunci: Kolorimetri, Levoglukosan
(1,6-anhidro-β-D-glukopiranosa), udara persekitaran
Abstract
Levoglucosan (1,6-anhydro-β-d-gucopyranose) in the atmosphere a major constituent
of biomass burning smoke was able to be used as a specific indicator due to
their stability during atmospheric transport and present at expected levels. Therefore, accurate determination of levoglucosan is crucial in order to investigate the
possible effects of levoglucosan
on the atmosphere. The aim of this study was to identify the optimum sampling
method for measuring the maximum quantity of levoglucosan present in ambient air. Air samples were
collected using an air absorbing system containing deionised distilled water.
Samples obtained were analysed by colourimetry anthrone-sulphuric acid method where absorbance of analyte was measured at 620 nm
using UV-visible spectrophotometer. Results obtained
found that the optimum sampling method consisted of deionised
water as an absorbent solution with the flow rate of 1.0 L/min. The
concentration of levoglucosan
in all sampling methods remained constant regardless of the storage period (1
day and 4 days), indicating that levoglucosan in the absorbing solution are quite stable. Covering the impinger tube with aluminium foil was shown to influence
the amount of levoglucosan
detected.
Keywords: colorimetry, Levoglucosan (1, 6-anhydro-β-d-gucopyranose), ambient air
References
1.
Fraser, M. P.
and Lakshmann, K. (2000). Using levoglucosan as a molecular marker for the long
range transport of biomass combustion
aerosols. Environ. Sci. Technol. 34,
4560-4564.
2.
Simoneit, B.
R. T. (2002). Biomass burning: A review of organic tracers for smoke from
incomplete combustion. Appl. Geoche.
17, 129-162.
3.
Locker, H.B.
(1988). The used of levoglocosan to assess environmental impact of residential
wood burning on air Quality. PhD thesis Dartmouth Colledge, Hanover NH.
4.
Dixon, R. W.
and Baltzell, G. (2006). Determination
of levoglucosanin atmospheric aerosols using High Performance Liquid
Chromatography with aerosol charge detection. J. Chrom. A .1109, 214-221.
5.
Dos Santos, C. Y. M., Azevedo, D. D. A. and De Aquino Neto, F. R.
(2002). Selected organic compounds from biomass burning in the atmospheric
particulate matter over sugarcane plantation areas. Atmos. Environ. 36,
3009-3019.
6.
Jordan T. B.,
Seen, A. J. and Jacobsen. (2006). Levoglucosan as an atmospheric tracer for
woodsmoke. Atmos. Environ. 40:5316-5321.
7.
Nolte,
C. G., Schauer, J. J., Cass, G. R. and Simoneit, B. R. T. (2001). Highly polar
organic compounds present in wood smoke and in the ambient atmosphere, Environ.
Sci. Technol. 35, 1912–1919.
8.
Simoneit, B.
R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P.,
Rogge, W. F. and Cass, G. R. 1999. Levoglucosan, a tracer for cellulose in
biomass burning and atmospheric particles. Atmos.
Environ. 33, 173-182.
9.
Elias, V. O.,
Simoneit, B. R. T., Cordeiro, R. C. and Turcq, B. (2001). Evaluating
levoglucosan as an indicator of biomass burning in Carajas, Amazonia: A comparison
to a charcoal record. Atmos. Environ.
65, 267-272.
10.
Fuzi Mohamed
Fartas, Mohamed Rozali Othman, Faraj Ali Rajeb and Mohd Talib. Latif. (2009). Determination of Levoglucosan in PM10 and
Biomass Close Burning Residue Samples Using Anthrone-sulfuric Acid Colorimetric Method. J. Appl. Sci. Res. 5(10), 1663-1667.
11.
Michihiro
Mochida, Kimitaka Kawamura, Pingqing Fu, Toshihiko Takemura. (2010). Seasonal variation of
levoglucosan in aerosols over the western North Pacific and its
assessment as a biomass-burning tracer. Atm. Environ. 14( 29): 3511-3518.
12.
Laurentin, A.
and Edwards, C. A. (2003). A microtiter
modification of the anthrone-sulfuric acid colorimetric assay for glucose-based
carbohydrates. Anal. Biochem.315,
143-145.
13.
Qi Li, Philip H. Steele, Brian Mitchell, Leonard L. Ingram, and Fei Yu.
(2013). The addition of water to extract maximum levoglucosan from the bio-oil
produced via fast pyrolysis of pretreated loblolly pinewood. BioResources, 8(2), 1868-1880.