

STUDY OF RADIONUCLIDES LINKAGES BETWEEN FISH, WATER AND SEDIMENT IN FORMER TIN MINING LAKE IN KAMPUNG GAJAH, PERAK, MALAYSIA

(Kajian Mengenai Hubungan Radionuklid di antara Ikan, Air, dan Sedimen dalam Tasik Bekas Lombong di Kampung Gajah, Perak, Malaysia)

Ahmad Saat ^{1,2}, Norannisak Muhd Isak ¹*, Zaini Hamzah ¹, Ab Khak Wood ¹

¹Faculty of Applied Sciences, ²International Education Centre (INTEC), Universiti Teknologi MARA, 40200 Shah Alam, Selangor

*Corresponding author: nysa_chy@yah

Abstract

Tin mining activities not only released metal contaminants into en lso radionuclides into the native soil and sediment. There is a possibility that radionuclides be transferred sediment, water and biota as a result of exchanges between them through biological, physical and chemical proces former tin mining lakes in Kampung Gajah, have become main sources of protein supplies and economic profit) the sident. The present study is to determine linkages ish), water and sediment in one of the former tin mining lake. between activity concentrations of natural radionuclides in The study involved analysis of radionuclides in water, e le part of fish and sediment. Filtered and unfiltered water samples sealed and count using gamma spectrometry. Fish and sediment collected from the study area were filled into marine th ugh 250 µm and kept in special container for measurement of samples prior to measurement were dried, grind a netry. The range of transfer ratio of ²²⁶Ra, ²²⁸Ra and ⁴⁰K from radionuclides activity concentration using gamm unfiltered water samples to fish are 1.95 to 3 and 12.63 to 18.69, while, for sediment to fish are from 1.30 to 2.27 x 100, respectively. Transfer ratio of ²²⁶Ra, ²²⁸Ra and ⁴⁰K from sediment to $\times 10^{-2}$, 0.43 to 1.13 $\times 10^{-2}$ and 9.08 to 13 unfiltered water is 7.00 x 10⁻³, 4.26 x 10⁻³, respectively. This present study shows that there is transfer for radionuclides from water to fish, sed and lastly sediment to water column.

Keywords: radionuclides, sedih. at, wher, fish, tin mining lake, gamma spectrometry

Abstrak

Aktiviti perlombongan bijk timab ukan sahaja mengeluarkan pencemaran logam kepada alam sekitar, tetapi juga radionuklid ke dalam tanah dan sedimen. Madonuklid mungkin dipindahkan antara sedimen, air, dan biota akibat pertukaran antara mereka melalui proses biologi, fizikal dan kimia. Ikan dalam tasik bekas lombong bijih timah di Kampung Gajah menjadi bekalan sumber utama protein dan sumber kewangan kepada penduduk tempatan. Kajian ini menentukan hubungan antara kepekatan aktiviti radionuklid tabii dalam sedimen, air dan biota (ikan) dalam satu tasik bekas lombong bijih timah. Kajian ini melibatkan radionuklid analisis dalam air, ikan dan sedimen .Sampel air yang dituras dan tidak dituras yang diambil dari tempat kajian diisi di dalam bekas marinelli yang ditutup rapi dan diukur menggunakan spektrometri gama. Sampel ikan dan sedimen dikeringkan, dikisar dan diayak dengan 250 µm dan disimpan di dalam bekas khas untuk mengkaji kepekatan aktiviti menggunakan spektrometri gama. Julat nisbah pindahan masing-masing daripada sampel air yang tidak dituras kepada ikan ialah 1.95 hingga 3.42, 0.86 hingga 2.70 dan 12.63 hingga 18.69 dan bagi sedimen kepada ikan ialah 1.30 hingga 2.27 x 10⁻², 0.43 hingga 1.13 x 10⁻² dan 9.08 hingga 13.45 x 10⁻². Nisbah pindahan masing-masing bagi ²²⁶Ra, ²²⁸Ra and ⁴⁰K daripada sampel sedimen kepada air yang tidak dituras ialah 7.00 x 10⁻³, 4.26 x 10⁻³ dan 7.30 x 10⁻³. Kajian ini menunjukan bahawa terdapat pemindahan bagi radionuklid daripada air ke ikan, sedimen kepada ikan dan akhirnya sedimen ke air.

Kata kunci: radionuklid, sedimen, air, ikan, tasik lombong bijih timah, spektrometri gama

Introduction

Malaysia was once been the world's largest tin producer by the end of the 19th century [1]. The factors that contributed to the success were discovery of rich tin fields in Perak and Selangor as well as high demand in market at that time [1]. However, depletion in tin deposits and decreasing in demand of tin in the world market, the tin mining activities has ceased operation about 30 to 40 years ago [2] which lead Malaysia nowadays to produce less than 1.5% of total world production [1]. As a result, the mining areas now are left with many abandoned lakes, which later have found secondary land uses in the form of aquaculture and vegetable cultivation plots [2, 3, 4]. The abandoned areas are also naturally rich with varies fresh water fish species that become the main sources of protein to local residents. However, some of them have still left abandoned.

The tin mining activities had left tin ores residue, quartz sand and certain minerals such as monazite, ilmenite, zircon and xenotime in the industry byproduct in the form of 'amang' (tin tailings) [5]. Monazite and xenotime are two minerals rich in natural radionuclides, particularly uranium, thorium and potassium [3, 5]. The natural radionuclide can be accumulating into the environment. The hyper-accumulation may become toxic and will affect the surrounding living organisms [6].

According to Suresh *et al.*, [7], sediment is a basic indicator of radiological contam nation with plays a dominant role and also can plays role in accumulating and transporting contaminants within the graphic area. Hence it is useful in aquatic radioecology study. The water and biota in the former tin hir agrake also can contain natural radionuclides due to interaction of chemical, physical and biological processes, this aliments, in which the amount of the natural radionuclides in materials determined by their respective processes.

Fishes from this mining lake can pose health risk to human due to the natural radionuclides that have been accumulated in fish' body via food chain [4, 8]. The present ody was carried out to determine the activity concentration of ²²⁶Ra, ²²⁸Ra and ⁴⁰K in some of fish speller (bila). The activity concentration in water and sediment samples from the area were also determined in the parameteristic of the lake with the final aim to determine the radionuclide linkage in water, sediment and sh.

Marials and Methods

Sampling site

The study area is located at Kapal 7 Lak the former tin mining lakes in Kinta Valley in the State of at 0.5 km. 1.5 km. The deepest part is about 40 m near the center of the Perak, Malaysia. The size of lake is about d near the centre of the lake. The uniqueness of this lake is the water in lake. There are four small islands local Kapal 7 Lake is connected to S on the west side and Air Hitam Lake on the east side via water channel which allowed the vate o flow a and out in two ways under certain condition. Besides, there are palm oils that have planted along ea of the lake. Table 1 shows the latitude, longitude (measured by using global positioning system ((PS)) and ater depth of sampling locations for water and sediment. The water depth at most locations ranged betw to 10 m. neares

Table 1: The coordinate for sampling locations

Location	Latitude	Longitude	Water depth (m)
KT1	N 04° 12.537'	E 101° 02.631'	9
KT2	N 04° 12.527'	E 101° 02.517'	10
KT3	N 04° 12.568'	E 101° 02.339'	10
KT4	N 04° 12.556'	E 101° 02.215'	10
KT5	N 04° 12.419'	E 101° 02.179'	10

Physical and chemical water quality was measured *in situ* for some parameters (temperature, specific conductivity, total dissolved solid, salinity, dissolved solid and pH) using calibrated YSI multi sensor probe, while, the turbidity (Table 2) was measured using calibrated turbidity meter.

Sampling collection and preparation

Eight species of fish were collected as representative of biota sample including Jelawat (*Leptobarbus hoevenii*), Lampam (*Puntius schwanenfeldii*), Patung (*Pristolepis fasciatus*), Raja (*Cichla monoculus*), Terbui (*Osteochilus hasselti*), Tilapia (*Oreochromis mossambicus*), Toman (*Channa micropeltes*) and Tongsan (*Aristichthys nobilis*). As far as possible, for each species samples of the same size were used. Before analysis, the edible flesh of fish samples were separate from the non-edible parts and oven dried at 60°C until constant weight was obtained. Then the samples were pulverized and sieved through 250 μm sieves. About 500 g were packed into special container (height (~90 mm) and diameter (~83 mm)) and sealed properly.

The water samples were collected 1 meter below the water surface using grab sample; and transferred into plastic container that have been rinsed with acid nitric and distilled water, respectively. Water scaples were acidified using 6 M nitric acid to pH 2 to stabilize the water [9]. Then samples were divided into the positions which are filtered and unfiltered water samples in order to determine the dissolved and suspended soli. Cellulose membrane nitrate filter 0.45 µm was used for filtering the samples [9]. The water samples (filtered and a latered) were transferred into the marinelli beaker and sealed properly prior to gamma counting using gampa spectrometer system.

Sediment cores were collected by using manual gravity corer with ore tube of 45 mm inner diameter. Sediment samples in PVC core tube were left air-dried in vertical po tion for about 3 to 4 weeks to obtain the shape of PVC column [10]. To form homogenous sample for each location res were sub-sampled by slicing it into the c 2 cm and mixed with other cores of the same depth. The first were used for analysis of radionuclides fil onstant mass, pulverized and sieved through in surface sediments. The aggregates were oven dried at 60 250 μm sieves and seal properly into a special plastic Δ ght ~20mm and diameter ~50 mm) [10]. All ntail librium between ²²⁶Ra and ²²⁸Ra and their respective samples were kept for 21 days, to establish secula radioactive progenies prior to gamma counting.

Measurement of ²²⁶Ra, ²²⁸Ra and ⁴⁰K

The measurement of activity concentration clides for all samples were done by using ORTEC® gamma ith resolution 1.84 keV, 25% relative efficiency at 1332 KeV ⁶⁰Co gamma lyser MCA) [11]. The measurement is possible by assuming secular rays spectrometer with HPGe detector ray and couple to Multi Channel iters were achieved after about 21 days [11]. Since ²²⁶Ra is an alpha equilibrium between parents and meas rements of ²²⁶Ra are based on radon daughters of either ²¹⁴Bi or ²¹⁴Pb [11]. emitter with weak gamma ne 🖣 In this study, ²¹⁴Bi were sel ed A measurement of ²²⁶Ra activity concentration due to higher intensity compared with ²¹⁴Pb. Meanwhe the ²²⁸R was measured by determining the activity of ²²⁸Ac [11]. The ²²⁶Ra, ²²⁸Ra and ⁴⁰K activity concentration ere dete mined based on 609, 911 and 1460 KeV gamma ray, respectively. The fish and for 4 hours (14400s) while, 8 hours (28800s) for filtered and unfiltered water sediment samples were samples. The efficiency calibration was made by using secondary standard prepared by mixing known amount UO₃ and KCl in the same container of the same geometry as samples [11].

Results and Discussion

The data generated in this research include water quality parameters, activity concentrations of ²²⁶Ra, ²²⁸Ra and ⁴⁰K in edible part of the selected biota (fish), water and sediment. From these results, the radionuclides linkages in fish-water-sediment system were determined. The physical and chemical water quality parameters that have been measured on-site during the sampling are shown in Table 2. Generally in all sampling locations, the temperature is in the ranged of 29.89°C to 31.67°C [12]. It is important to note that the water temperature is varies depending on the weather at a particular time. The pH values are in general close to neutral and its comparable with others study as Samudi *et al.*, [4] which stated that the pH ranged is 7.21-7.92 in former tin mining water at Puchong, Malaysia. Specific conductivity value is ranged from 155 to 225μS/cm. The total dissolved solid and turbidity are in the range from 0.090 to 0.134 mg/L and 2.50 to 6.89 NTU respectively, which indicated that the amount of suspended solid in water is low. Total suspended solid is in the range of 1.92 to 8.40 mg/L which is 0.45 μm. Meanwhile, dissolved

oxygen is ranged from 6.96 to 11.15 mg/L which allowed the aquatic organisms and plants to live. The reading of salinity is low which is on average of 0.08 mg/L. According to Zaini *et al.*, [9], in low salinity environments radium is strongly adsorbed on water molecules of surfaces water. Generally, the physical water quality parameters in this study are comparable with other studies by Samudi *et al.*, [4] and Zaini *et al.*, [12]. The *in-situ* parameter in Table 2 shows that most of the parameter falls into Class I (practically no treatment necessary) while certain parameter falls into Class IIA (conventional treatment required) based on National Water Quality Standard, NWQS (DOE, 2008) [13].

			- •		-			
Location	Temp (°C)	Sp C (μS/cm)	TDS (mg/L)	Salinity (mg/L)	DO (mg/L)	pН	Turbidity (NTU)	TSS (mg/L)
KT1	29.9	225	0.13	0.10	6.96	7.	4.24	1.92
KT2	30.0	187	0.11	0.08	8.61	7.21	4.55	2.83
KT3	30.0	193	0.11	0.08	11.15	6. 8	6.89	7.00
KT4	31.6	190	0.11	0.08	10.94	7.8	3.16	2.85
KT5	31.7	155	0.09	0.06	10.36	16	2.50	8.40
*NWQS	-	I	I	IIA	I		IIA	I

Table 2: Water Quality Parameters measured in Kapal 7 Lake

The activity concentrations of radionuclides in edible part of bles in Jelawat (Leptobarbus hoevenii), Paja (Cichla monoculus), Terbui (Osteochilus Lampam (Puntius schwanenfeldii), Patung (Pristolepis fasc hasselti), Tilapia (Oreochromis miloticus), Toman (Cha eltes) and Tongsan (Aristichthys nobilis) are shown in Table 3. The results, the ²²⁶Ra, ²²⁸Ra and tivity concentration are higher in Tongsan, Patung and Toman species which is 5.67 ± 0.47 , 4.48 ± 0.63 7 ± 8.6 Bg/kg, respectively. Meanwhile, the lowest nd 2: activity concentrations of ²²⁶Ra, ²²⁸Ra and ⁴⁰K lawat, Toman and Tongsan species which is 3.24 ± 0.36 , 1.42 ± 0.37 and 161.9 ± 6.9 Bg/kg, respective differences between activity concentrations of radionuclides in dicate that there are different amount of radionuclides uptake various edible fish flesh samples from the san lake i depending on fish species. In addition nemistry, the physiology of fish which included the feeding behavior and their digestion of food ma also a fect the amount of radionuclides accumulated in their body [13]. In nuclides is of the order 228 Ra < 226 Ra < 40 K. This may due to the all fish species, activity concentry han ²³²Th parent of ²²⁸Ra in edible parts of fish. amount of ²³⁸U parent of ²²⁶Ra i

Table	A atirrite	concentrations	of modion		in fich	aamm1aa
1 able	ACHVIIV	concentrations	or radion	uchaes	111 11811	sambles

Fish (local name)	Activity concentrations of radionuclides (Bg/kg)				
	²²⁶ Ra	²²⁸ Ra	⁴⁰ K		
Jelawat	3.24 ± 0.36	1.71 ± 0.39	172.9 ± 7.1		
Lampam	4.66 ± 0.42	2.08 ± 0.42	169.4 ± 6.9		
Patung	3.48 ± 0.37	4.48 ± 0.63	178.1 ± 7.1		
Raja	4.13 ± 0.40	3.93 ± 0.59	184.3 ± 7.3		
Terbui	4.70 ± 0.43	3.26 ± 0.54	209.1 ± 7.9		
Tilapia	3.84 ± 0.40	3.70 ± 0.59	216.8 ± 8.2		
Toman	3.80 ± 0.40	1.42 ± 0.37	239.7 ± 8.6		
Tongsan	5.67 ± 0.47	3.51 ± 0.56	161.9 ± 6.9		

Table 4 shows the activity concentrations of radionuclides in water samples for filtered and unfiltered water. The average of activity concentration of 226 Ra, 228 Ra and 40 K in all locations is 1.66 ± 0.30 , 1.66 ± 0.46 and 12.82 ± 2.26

^{*}National Water Quality Standard (NWQS)

Bg/kg for unfiltered water samples, while, for filtered water samples is 1.25 ± 0.26 , 0.73 ± 0.32 and 10.63 ± 2.04 Bg/kg, respectively. The activity concentration of radionuclides in filtered water samples is less than in unfiltered water samples. This may explain that some of the radionuclides had been adsorbed to the surface of suspended solid in water. The amount of 228 Ra attached to suspended solid is higher than 226 Ra may due to the residence time. Results obtain in Table 3 and Table 4 of filtered water samples shows the same trend of radionuclides. This may explain that uptake of radionuclides by fish depends on the concentration and on the speciation of the radionuclides in dissolved water [14]. In addition, the concentration of radionuclides in water may possibly used to predict accumulation in fish [14].

Water sample		Activity	concentration	s of radionuclid	les (Bg/kg)		
	²²⁶ Ra		228	²²⁸ Ra		▲ 40 K	
•	Filtered	Unfiltered	Filtered	Unfiltered	Freed	Unfiltered	
KT1	1.07 ± 0.11	2.19 ± 0.15	0.46 ± 0.11	1.33 ± 0.18	7 69 ± 9.79	13.29 ± 1.03	
KT2	1.18 ± 0.11	1.55 ± 0.13	0.48 ± 0.11	2.48 ± 0.24	1.44 ± 0.2	11.73 ± 0.96	
KT3	1.31 ± 0.12	1.34 ± 0.12	0.98 ± 0.15	1.21 ± 0.17	2., 1.01	14.04 ± 1.06	
KT4	1.46 ± 0.12	1.56 ± 0.13	0.99 ± 0.15	1.47 ± 0.1	1232 ± 0.99	12.47 ± 1.00	
KT5	1.24 ± 0.11	1.67 ± 0.13	0.73 ± 0.13	1.79	9.58 ± 0.87	12.57 ± 1.00	
Average	1.25 ± 0.26	1.66 ± 0.30	0.73 ± 0.32	1.66 ± 0.16	10.63 ± 2.04	12.82 ± 2.26	

Table 4: Activity concentrations of radionuclides in water samples

ent samples. The surface sediment were Table 5 shows the activity concentration of radionuclides in sampled and analyzed because the major water-sediments action by the chemical and biological processes occurred on the surface of benthic sediments layer. From Table average of sediment samples for ²²⁶Ra, ²²⁸Ra 2.1 and 1782.2 ± 201 Bg/kg, respectively. In sediment and 40 K activity concentration are 249.8 \pm 19.5, 397 sample, activity concentration of radionuclides is of ge ord 226 Ra $< ^{228}$ Ra $< ^{40}$ K. This may due to the present of monazite which contained ²³²Th and ⁴⁰K [14] rounding of study area (Kapal 7 Lake) there have planted palm oil which may results in high amount fish-water-sediment due to runoff of the fertilizers into the lake. Generally, the activity concentrations lides are higher in sediment than in fish and in water due to dion the characteristics of sediment that bette lating of radionuclides [7] than fish and water. in accum.

Sediment sample	Activity concentrations of radionuclides (Bg/kg)				
	²²⁶ Ra	²²⁸ Ra	40 K		
KT1	258.0 ± 8.5	434.7 ± 20.2	1647 ± 88		
KT2	152.6 ± 7.1	344.2 ± 17.0	1905 ± 90		
KT3	266.0 ± 8.3	373.5 ± 17.9	1731 ± 87		
KT4	289.8 ± 9.1	422.7 ± 20.0	2095 ± 101		
KT5	282.4 ± 8.5	414.9 ± 18.9	1533 ± 80		
Average	249.8 ± 19.5	397.9 ± 42.1	1782 ± 201		

Table 5: Acceptly concentrations of radionuclides in sediment samples

Radionuclides maybe transferred between biota and reference media (water and sediment) in freshwater ecosystem. Referring to bioaccumulation models, the aquatic organisms are assuming in equilibrium with water and sediment in their surroundings [14]. The accumulation of radionuclides in biota can be represented in simplified ratio by relating radionuclides concentration in biota to radionuclides concentration in water and sediment [14]. The transfer radionuclides in fish-water-sediment can be calculated using Concentration Factor (CF) and Distribution

Ahmad Saat et al: STUDY OF RADIONUCLIDES LINKAGES BETWEEN FISH, WATER AND SEDIMENT IN FORMER TIN MINING LAKE IN KAMPUNG GAJAH, PERAK, MALAYSIA

Coefficient, K_d as in Equation 1 and 2 [14]. In addition, the dissolved and particulate phase also been assumed to be equilibrium with exchanges of nuclides between particles and water being wholly reversible [16].

$$CF = \frac{\text{Activity concentration in biota (Bg/kg) (dry weight)}}{\text{Activity concentration of reference medium (Bg/kg)}}$$

$$K_d = \frac{\text{Activity concentration in sediment (Bg/kg)(dry weight)}}{\text{Activity concentration in unfiltered water (Bg/kg)}}$$
(Equation 2)

The Concentration Factor, CF from unfiltered water to fish samples as fish represent receiving medium, while, water as transfer medium which are shown in Table 6. The higher CF of ²²⁶Ra, ²²⁸Ra an ⁴⁰K activity concentration are Tongsan (*Aristichthys nobilis*), Patung (*Pristolepis fasciatus*) and Toman (*Chan a mic opeltes*) which is 3.42, 2.70 and 18.69, respectively. From this results, the transfer ratio, CF of ²²⁶Ra are generally ligher than ²²⁸Ra while ⁴⁰K showed nearly 11 times the value of ²²⁶Ra and ²²⁸Ra. This may show that rays pock, and factors of the water from which fish were caught also determining factors that vary from one location 10 of ers as shown in Table 2.

Table 6: The Concentration Factor (CF) of radionuclides from infiltered water samples to fish samples

Fish (local name)	Distriction coescient, K _d				
	²²⁶ Ra	△ ²²⁸ Ra	⁴⁰ K		
Jelawat	1.95	1.03	13.49		
Lampam	2.81	1.25	13.21		
Patung	2.10	2.70	13.89		
Raja	2.49	2.37	14.38		
Terbui	2.83	1.96	16.31		
Tilapia	21	2.23	16.91		
Toman	2.29	0.86	18.69		
Tongsan	3.42	2.11	12.63		

Table 7 shows Concentration actor. CF from sediment to fish samples. The higher ratio of ²²⁶Ra, ²²⁸Ra and ⁴⁰K activity concentration are Tons an (*Aristichthys nobilis*), Patung (*Pristolepis fasciatus*) and Toman (*Channa micropeltes*) which is 2.2 X x 16°, 1.13 x 10⁻² and 13.45 x 10⁻², respectively. The observable results in Table 6 and Table 7 had shown the same species of fish have higher transfer ratio, CF for ²²⁶Ra, ²²⁸Ra and ⁴⁰K, respectively. However, the CF in unfiltered water to fish is higher than in sediments to fish. The observable difference may explain that fish received high amount of radionuclides in water than sediment.

The distribution coefficient, K_d from sediments to unfiltered water is shown in Table 8. The average ratio for all locations for 226 Ra, 228 Ra and 40 K are 7.00 x 10^{-3} , 4.26 x 10^{-3} and 7.30 x 10^{-3} , respectively. Location KT2 showed highest transfer ratio of 226 Ra and 228 Ra, while, 40 K shows highest at KT5. The highest transfer ratio of 226 Ra and 228 Ra at KT2 indicated that there is abundance of U and Th which is parents of 226 Ra and 228 Ra, respectively, at KT2 compared to other locations. Meanwhile, there is slightly difference in transfer ratio of 40 K at all location even though transfer factor of 40 K is highest at KT5.

Table 7: The Concentration Factor (CF) of radionuclides from sediment samples to fish samples

Fish (local name)	Distribution coefficient, K_d (x10 ⁻²)				
` <u> </u>	²²⁶ Ra	²²⁸ Ra	⁴⁰ K		
Jelawat	1.30	0.43	9.70		
Lampam	1.87	0.52	9.51		
Patung	1.39	1.13	9.99		
Raja	1.65	0.99	10.34		
Terbui	1.88	0.82	11.73		
Tilapia	1.54	0.93	12.17		
Toman	1.52	0.36	13.45		
Tongsan	2.27	0.88	9.08		

Table 8: The Distribution Coefficient (K_d) of radionuclides from sediment samples o unfilted water samples according to locations

Location	Distribution coefficient, $\sqrt{(x10^3)}$			
·	²²⁶ Ra	²²⁸ Ra	$^{40}\mathrm{K}$	
KT1	8.49	3.06	8.07	
KT2	10.16	7.21	6.16	
KT3	5.04	3.21	8.11	
KT4	5.38	.48	5.96	
KT5	5.91	4.31	8.20	
Average	7.00 ± 2.23	4.26 ± 1.72	7.30 ± 1.14	

Generally, the results (Tables 4, 5 and 6) at there are linkages between biota-water-sediment in the ecosystem. However, transfer ratio show om sediment to unfiltered water and fish samples compared to may adicated that the major transfer of radionuclide happen between transfer ratio from water to fish. Thi unfiltered water with fish. The dis se radionuclides in fish can occur through solid suspensions as well involved of their food chain wh included the aquatic plants, plankton and etc. The transfer ratio is less in e to the solubility and mobility of these radionuclides in water. In addition, solid sediment to unfiltered water to the bottom of the lake thus be removed from the water column [14]. Besides, particles from water can settle radionuclides dissolv in wate can also be absorbed by the bottom sediment [14]. However, the absorbed of radionuclides by bottom dime can be remobilized and available for uptake by biota [14]. This may indicate that there may possibly high transfer ratio from water to sediment compared transfer ratio from sediment to water.

Conclusion

There is linkage of radionuclides between fish-water-sediments samples in former tin mining lake in Kampung Gajah, Perak, Malaysia. The sequence of radionuclides activity concentration is; sediment > fish > water. While, transfer ratio is in the sequence of; water to fish > sediments to fish > sediments to water. The higher transfer ratio was found in Tongsan, Patung and Toman that could be attributed to their habitat, dietary and species.

Acknowledgement

The authors would like to thanks the Universiti Teknologi MARA, especially Faculty of Applied Sciences for the facilities provided during this study. Thank you also to the research management institute (600-Dana 5/3/RIF (1/2012)) for financial support for this study.

Ahmad Saat et al: STUDY OF RADIONUCLIDES LINKAGES BETWEEN FISH, WATER AND SEDIMENT IN FORMER TIN MINING LAKE IN KAMPUNG GAJAH, PERAK, MALAYSIA

References

- 1. Yap, K., M., (2007). Tin Mining in Malaysia- Is There any Revival?. Bulletin Jurutera. 12-18.
- Hamzah, Z, Saat, A., Abu Bakar Z and Wood, A. K. (2011). Anthropogenic Heavy Metals, U-238 and Th-232
 Profiles in Sediments from an Abandoned Tin Mining Lake in Malaysia. Proceeding of 2011 3rd International
 Conference on Chemical, Biological and Environmental Engineering, Singapore. 20: 75-79.
- 3. Yusof, A., M., Mahat, M., N., Omar A, N. and. Wood A., K., H. (2001). Water Quality Studies in an Aquatic Environment of Disused Tin-Mining Pools and in Drinking Water. *Ecological Engineering*; **16**: 405–414.
- 4. Yasir, M. S. Ahmad Kabir, N., Yahaya R. and Majid, A. A. (2008). Kandungan logam berat dan radionuclide tabii di dalam ikan, air, tumbuhan dan sedimen di bekas lombong. *The Malaysia Journal Analytical Science*. **12** (1): 172-178.
- Hamzah, Z., Saat, A., Mashuri, N. H., and Redzuan, S. D. (2008). Surface Radiation Dose and Radionuclide Measurement in Ex-Tin Mining Aerea, Kg. Gajah, Perak. *The Malaysian Journal of Analytical Science*. 12 (2): 419-431.
- 6. Marlinda Musa, (2008). Thesis of Metals and Radionuclides Uptake by *Ottelia Rismoides* Collected from the Ex-Mining Area in Kg. Gajah, Perak. 1-13.
- 7. Suresh G., Ramasamy V., Meenakshisundaram V., Venkatachalapathy R. and Pornusak v. V., (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concent tions of the river sediments. *Applied Radiation and Isotopes*. 69: 1466-1474.
- 8. Nwabueze A., A., (2010). Levels of Some Heavy Metals in Ti su s G Bonga Fish, Ethmallosa fimbriata(Bowdich, 1825) from Forcados River. Journal of Applied Spirit metal and Biological Sciences. 1 (3): 44-47.
- 9. Hamzah, Z., Saat A. and Kassim, M. (2011). Determination of Fudon Activity Concentration in Hot Spring and Surface Water using Gamma Spectrometry Technique. *The Ma. vsian ournal Of Analytical Sciences*. **15** (2): 288–294.
- 10. Hamzah, Z., Redzuan S. D. and Saat A. (2011b). Deter tip doll of Sediment Profile for ²¹⁰Pb, Pb, U and Th from Sultan Abu Bakar Dam Due to Soil Erosion from Highland Agriculture Area, Cameron Highlands, Malaysia. *American Journal of Environmental Saction* 7(3): 263-268.
- 11. Hamzah, Z., Redzuan S. D. and Saat A. (2011) Assessment of Radiation Health Risk in Cameron Highlands Tea Plantations. *The Malaysian Journal of Laboration Sciences* 15: 130 –137.
- 12. Hamzah, Z., Alias, M., Saat, A. an Isha A. K. (2011). Measurement of Some Water Quality ParametersRelated to Natural Radiopych es in Aqueous Environmental Samples from Former Tin Mining Lake. *Journal of Nuclear and Related Technologies*.8 (2): 49-59.
- 13. DOE (2008). *National Water Quality Standards for Malaysia*. Retrieved November 3, 2013, from http://www.nahrim.gov.my.
- 14. Handbook of Parameer Values for the Prediction Of Radionuclide Transfer in Terrestrial and Freshwater Environments International Admic Energy Agency Vienna, (2010). Technical Reports Series No. 472: 117-131.
- 15. Ramasamy, V. Suresh, Meenakshisundaram, V. and Gajendran, V. (2009). Evaluation of Natural Radionuclide Con. at in River sediments and Excess Lifetime Cancer Risk Due to Gamma Radioactivity. 1 (1): 6-10.
- 16. Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. Technical Reports Series No.422: 8-25.