Malaysian Journal of Analytical Sciences Vol 17 No 3 (2013): 475 – 480

 

 

 

GRAPHENE COLLOIDAL DISPERSION IN VARIOUS ORGANIC SOLVENTS

 

(Penyerakan Koloid Grafin dalam Pelbagai Pelarut Organik)

 

Ainee Fatimah Ahmad1, Fatin Humaizah Abd Moin1, Hur Munawar Kabir Mohd1, Irman Abdul Rahman1,

Faizal Mohamed1, Chia Chin Hua1, Suria Ramli2,  Shahidan Radiman1*

 

1School of Applied Physics,

2School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

 

*Corresponding author: shahidan@ukm.my

 

 

Abstract

Graphene is an atom thick carbon-based material that has many intriguing physical and chemicals properties. Since stacks of graphene form graphite, graphene can be produce by chemical exfoliation of graphite in surfactant solution. In this study, the colloidal dispersions of graphene in a variety of organic solvents such as isopropanol, tetrahydrofuran (THF),N-methylpyrrolidone (NMP) and gamma-butyrolactone (GBL) were prepared. Dispersion by bath sonication provides mechanical disruption that breaks apart the graphite flakes, which is then sterically stabilized in the solvent system. FTIR analysis has confirmed the presence of the C=C groups in the samples. By analyzing bright-field TEM images obtained from each dispersion, we have found that the graphene dispersed in isopropanol and THF are multilayered, wrinkled and overlapping graphene sheets; while samples in NMP and GBL are less thick with predominantly folded graphene sheets. The stronger solvents such as NMP and GBL are more effective than isopropanol and THF in obtaining stable graphene dispersions. This will be useful for self-assembly work by dip-coating or monolayer method in the future.

 

Keywords: graphene, tetrahydrofuran (THF), N-methylpyrrolidone (NMP), gamma-butyrolactone (GBL), Fourier transform infrared spectroscopy (FTIR)

 

References

1.       Soldano, C., Mahmood, A. & Dujardin, E. (2010). Production, Properties and Potential of Graphene. Carbon, 48:2127-2150.

2.        Geim, A.K. & Novoselov, K.S. (2007). The Rise of Grapehene. Nature Materials, 6:183-191.

3.        Park, S. & Ruoff, R.D. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology 4:217-224.

4.       Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos S.V., Grigorieva, I.V. &  Firsov, A.A.,  (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306:666-669.

5.       Hummers, W.S. & Offeman, R.E. (1958). Preparation of Graphite Oxide. Journal of the American Chemical Society, 80(6):1339.

6.       Dressehaus, M.S. & Dressehaus, D. (2009). Intercalation Compounds of Graphite. Advance Physics, 51(1):1-186.

7.       Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M. & Adamson D.H. (2006). Functionalized Single     Graphene Sheets Derived from Splitting Graphite Oxide. Journal of Physical Chemistry B, 110(17):8535-8539.

8.       McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A. & Liu, J. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Material, 19(18):4396-4404.

9.       Li, D., Muller, M.B. Gilje, S., Kaner, R.B. & Wallace, G.G. (2008). Processable Aqueous Dispersions of Graphene   Nanosheets. Nature Nanotechnology, 3(2):101-105.

10.    Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., & Xue, Q. (2012). Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. European Polymer Journal, 48:1026-1033.

11.    Zhou, X.Z., Huang, X., Qi, X.Y., Wu, S.X., Xue, C., Boey F.Y.C., Yan, Q., Chen, P. & Zhang, H. In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. Journal of Physical Chemistry C, 113:10842–6.

12.    Stankovich, S., Dikin, D.A., Compton, O.C., Dommett, G.H.B., Ruoff, R.S. & Nguyen S.T. (2010). Systematic Post-assembly Modification of Graphene Oxide Paper with Primary Alkylamines. Chemistry of Material,  22:4153-4157.

13.    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z. & De, S. (2008). High-yield Production of Graphene by Liquid-phase Exfoliation of Graphite. Nature Nanotechnology, 3(9):563-568.

14.    Khan, U., O’Neill, A., Porwal, H., May, P., Nawaz, K. & Coleman, N.J. (2012). Size of selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon, 50:470-475.

15.    Green, A.A.& Hersam, M.C. (2010). Emerging Methods for Producing Monodisperse Graphene Dispersions. The Journal of Physical Chemistry Letters, 1:544-549.

16.    Dhakate, S.R., Chauhan, N., Sharma, S., Tawale, J., Singh, S., Sahare, P.D. & Mathur. (2011). An approach to produce single and double layer graphene from re-exfoliation of expanded graphene. Carbon 49,1946-1954.

17.    Dato, A., Lee, Z., Jeon, K.J., Erni, R., Radmilovic, V., Richardson, T.J. & Frenklach, M. (2009). Clean and highly ordered graphene synthesized in the gas phase. Chemical Communications, 6095-6097.

18.    Valles, C., Drummond, C., Saadaoui, H., Furtado, C.A., He, M. & Roubeau, O. (2008). Solutions of Negatively Charged Graphene Sheets and Ribbons. Journal of the American Chemical Society, 130(47):15802-15804.

19.    Wajid, A.S., Das, S., Irin, F., Tanvir Ahmed H.S., Sherlburne, J.L., Parviz, D., Fullerton, R.J., Jankowski, A.F., Hedden, R.C. & Green M.J. (2012). Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 50:526-534.

20.    Smith, R.J., Loyta, M. & Coleman, J.N. (2010). The Importance of Repulsive Potential Barriers for the Dispersion of  Graphene Using Surfactants. New Journal of Physics, 12: 125008.

21.    Hunter, R.J. (1993). Interaction to Modern Colloid Science. Oxford: Oxford University Press.

22.    Israelachvili, J. (1991). Intermolecular and Surface Forces. New York: Academic Press.

 

Previous                    Content                    Next