

ISOLATION OF ASTILBIN FROM LEAVES OF CRATOXYLUM ARBORESCENS

(Pemencilan Komponen Astilbin dari Daun Cratoxylum arborescens)

Samsiah Jusoh^{1,2}, Zuriati Zakaria³ and Laily B. Din²*

¹Rice and Industrial Crop Research Centre,
Malaysian Agricultural Research and Development Institute (MARDI)
P.O.Box 12301, 50774 Kuala Lumpur, Malaysia
² School of Chemical Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
³ Malaysia Japan Institute of Technology,
Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Manaysia

*Corresponding author: lbdin@ukm.

Abstract

Phytochemical studies was conducted on the leaves of *Cratoxylum artors cens*, at has been collected from Post Brooke, Gua Musang, Kelantan, Malaysia. Traditionally, latex of the stem bark of *Carbo rescens* is being used for the treatment of wound. Extraction of leaves of *C. arborescens* using organic solvents followed tradification using standard procedure of purification yielded known compound, astilbin. This compound was identified by NMR spectral data using various 2D-techniques and comparison with the literature data. Reports showed that the compound has a unique immunosuppressive activity, a selective inhibition against activated T lymphocytes. This characterists of astilbin is beneficial for the treatment of human immune diseases.

Keywords: guttiferae, cratoxylum arborescens, astnoin, newes, NMR

Abstrak

Kajian fitokimia yang dijalankan te ata daun *satoxylum arborescens* yang dikutip dari Post Brooke, Gua Musang, Kelantan, Malaysia. Secara tradisional, lateks kulit be ang *c. arborescens* digunakan untuk mengubat luka. Pengekstrakan ke atas daun *C. arborescens* menggunakan elarut organik orkuti dengan kaedah lazim penulenan menghasilkan sebatian yang telah dikenal pasti, astilbin. Komponen in dikenal pasti menggunakan data spektrum RMN dengan teknik variasi 2D dan perbandingan dengan data literatur. Laporan negunjukan komponen ini menunjukkan aktiviti immunosupresif yang unik, perencatan selektif terhadap limfosit T diaktifkan. Ciri asulbin ini adalah bermanfaat untuk merawat penyakit berkenaan sistem imun.

Kata kunci: guttiferae, cratoxylum arborescens, astilbin, daun, RMN

Introduction

Cratoxylum arborescens is known locally as Geronggang. This genus belongs to the family of Guttiferae. It is an emergent tree up to 60 m tall and diameter of about 120 cm. The stem has yellow latex and the leaves are opposite, simple, penni-veined, glabrous and venation is inconspicuous. Flowers are about 8 mm in diameter, white-pink-red and placed in panicles. The fruits are about 8 mm long red-brown-black dehiscent capsule, with many small winged seeds. This plant is normally found in undisturbed to slightly mixed dipterocarp, sub-montane forests up to 1000 m altitude. Geronggang is mostly growing on alluvial sites and along rivers, but are also found on ridges. In secondary forests, this plant is usually presents as pre-disturbance remnant tree [1]. A number of studies have already been conducted on *C. arborescens*, where the compound 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone was isolated from stem bark [2], while 1,3,8-trihydroxy-2,4-dimethoxyxanthone, 1,7-dihydroxy-2,8-dimethoxyxanthone, 1,3,7-trihydroxy-6-methoxy-4,5-diisoprenylxanthone, euxanthone, friedelin, friedelinol, methoxyemodin, betulinic acid, lup-20(29)-en-3,30-diol, 3β-hydroxylup-20(29)-en-30-oic acid, 3,4-dihydroxybenzoic acid, eucryphin, astilbin, and isoastilbin from leaves and twigs of *C. arborescens* collected from Narathiwat province, Thailand [3,

4]. Astilbin has also been isolated from the leaves of Chinese folk medicine, *Engelhardia chrysolepis* [5]. Astilbin from stem bark of *Dimorphandra mollis* collected in Rio Claro, Sao Paulo State, Brazil showed insecticidal activity against confined bees [6].

Experimental

Plant Material

The leaves of *Cratoxylum arborescens* was collected at Post Brooke, Gua Musang, Kelantan, Malaysia. The voucher specimen of *C. arborescens* (SK 1932/11) is deposited at Herbarium UPM (UPM), Serdang, Selangor, Malaysia.

Extraction and Isolation

The leaves of *C. arborescens* (GGB, 569.3 g) was dried in oven at 50°C, ground and extracted using solvent extraction at room temperature for five days. The powdered leaves was extracted using methanol (crude extract 45.6 g) and then fractionated with hexane with ratio 1:1. 1.3 g of hexane fraction (GGBA) and 36.8 g of methanol fraction (GGBC) yielded. Chemical components from methanol fraction was separated using vacuum liquid chromatography (VLC). A mixture of solvent ethyl acetate and methanol from 100% ethyl acetate to 100% methanol have been used as mobile phase and 12 fractions were collected. Vial 1-6 cm VLC of GGBC have selected for further purification using column chromatography and 148 vials were collected.

Fractions 106-114 were combined for further purification using column chromography with an internal diameter x length of column is 1.0 cm x 50.0 cm and 27 fractions were collected. The compound was eluted with solvent mixture of ethyl acetate and methanol. The combined fractions was caponal and gave a greenish crystal (181 mg). The structure of the purified compound was analyzed using Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectrometer.

Astilbin (1)

Greenish needles (181 mg). IR cm⁻¹: 3321 (OH), 2944, 288, 1648, 1412, 1113 and 1020. ¹H NMR (600 MHz, CD₃COCD₃) δ: 5.17 (d, *J*=10.8Hz, H-2), 4.67 (d, *J*=10.8Hz, H-), 11.92 (s, 5-OH), 5.96 (dd, *J*=1.8, 13.5Hz, H-6, H-8), 9.98 (brs, 7-OH), 7.07 (d, *J*=1.8Hz, H-2'), 6.86 (d, *J*=8, Hz, H-5'), 6.89 (dd, *J*=1.8, 7.8Hz, H-6'), 4.08 (s, H-1"), 3.55 (s, H-2"), 3.79 (d, *J*=3.0Hz, 2"-OH), 3.64-1.65 (m, H-3"), 3.97 (d, *J*=3.6Hz, 3"-OH), 3.32 (ddd, *J*=3.0, 9.3Hz, H-4"), 3.82 (brs, 4"-OH), 4.20 (dd, *J*=6.0, 3.6Hz, H-5") and 1.13 (d, *J*=6.6Hz, H-6"). ¹³C NMR (125 MHz, CD₃COCD₃) δ: 195.2 (C-4, C=O), 166.9 (7-5), 164.4 (C-7), 162.8 (C-9), 146.0 (C-3"), 145.2 (C-4"), 128.1 (C-1"), 119.7 (C-6"), 115.2 (C-5"), 114.5 (C-2"), 101.5 (6'-10), 100.5 (C-1"), 96.2 (C-6), 95.1 (C-8), 82.5 (C-2), 76.4 (C-3), 72.6 (C-4"), 71.3 (C-3"), 70.6 (C-2"), 59.0 (C-5") and 17.1 (CH₃, C-6").

Results and Discussion

f coupling patterns i.e. singlet (s), doublet (d), doublet of doublets (dd), doublet of ¹H NMR showed 5 types doublet of doublet (ddd) and ultiplet (m). Singlet was shows for H-1" (δ 4.06), two hydroxyl group that attached to C-5 (δ 11.92) and C-7 (δ 9.98) in aglycone structure and one hydroxyl group at C-4" (δ 3.82) in rhamnose structure. There are eight of doublet patterns at chemical shift 1.13 (d, J=6.6Hz, 6"-CH₃, neighbour with H-5"), 3.79 (d, J=3.0Hz, 2"-OH, neighbour with H-2"), 3.97 (d, J=3.6Hz, 3"-OH, neighbour with H-3"), 4.67 (d, J=10.8Hz, H-3, neighbour with H-2), 5.17 (d, J=10.8Hz, H-2, neighbour with H-3), 6.86 (d, J=8.4Hz, H-5', neighbour with H-6'), 7.07 (d, J=1.8Hz, H-2', neighbour with H-6') and 8.25 (d, J=15.6Hz, 3'-OH, 4'-OH, between them). There are three doublet of doublet patterns. J coupling value revealed the proton neighbour is ortho, meta or para coupling. The pattern at δ 5.96 (dd, H-6, H-8) with J=13.5Hz revealed ortho coupling with H-7, $J_{\text{meta}}=1.8$ Hz between H-6 with H-8. While the dd pattern at δ 6.90 (dd, H-6') revealed J_{ortho} = 7.8Hz with H-5' and J_{meta} =1.8Hz with H-2'. Chemical shift 4.20 (dd, H-5") revealed J_{ortho}=9.6Hz between H-5' with H-6' and para coupling with H-2'. The only one ddd pattern was observed at δ 3.32 (H-4") revealed J_{ortho} =9.3Hz (coupling with H-5" and H-3") and J_{meta} =3.0 Hz (coupling with H-2"). One multiplet pattern is corresponding to H-3" at chemical shift 3.64-3.65. This proton has ortho coupling with H-2" and H-4" and meta coupling with H-1" and H-5".

The spectral data of ${}^{1}H$ NMR was supported by a ${}^{1}H$ - ${}^{1}H$ COSY NMR data. COSY is correlated spectroscopy. It indicates which protons are coupling with other proton. The data allowed us to identify a four correlations between six proton. The first correlation could be seen between proton methyl at δ 1.13 (d, J=6.6Hz, 6"-CH₃) with proton

attached to C-5" (δ 4.20 (dd, J=6.0, 9.6Hz). The other correlation is between δ 3.32 (ddd, J=3.0, 9.3Hz, H-4") with δ 3.64-3.65 (m, H-3"), δ 3.32 (ddd, J=3.0, 9.3Hz, H-4") with δ 4.20 (dd, J=6.0, 9.6Hz, H-5") and δ 4.67 (d, J=10.8Hz, H-3) with δ 5.17 (d, J=10.8Hz, H-2). There are J coupling $J_{\rm eq-eq}$ =1.8Hz between H-4" with H-3" and $J_{\rm ax-eq}$ =3.0Hz between H-3" with H-2". The four correlations were showed in Figure 1.

Figure 1. ¹H-¹H COSY come wity of GGBC 4

¹³C-APT is one of the method that showed a carbon attach to the proton, where -CH₃ and CH peaks appear te phase. Quaternary C are seen but may be quite small in phased in one direction and -CH₂- peaks appear in oppo ₹21 peaks of carbon for this GGBC 4 compound. From size depending on the length of relaxation allowed. tion with proton in ¹H-¹³C HSQC NMR. The correlation of those peaks, 12 peaks of carbon were revealed a **12**, 6"-CH₃), 70.6 (C-2") with 3.55 (s, H-2"), 71.3 (C-3") with those peaks are 17.1 (CH₃, C-6") with (1.13 (s, H-1"), 69.0 (C-5") with 4.20 (dd, J=6.0, 9.6Hz, H-5"), 76.4 (C-3) 3.64-3.65 (m, H-3"), 100.5 (C-1") with 4.0 with 4.67 (d, J=10.8Hz, H-3), §2.5 (4) J=10.8Hz, H-2), 96.2 (C-6) and 95.1 (C-8) with 5.96 (dd, J=1.8, 13.5Hz, H-6, H-8), 11502 (CA 6.86 (d, J=8.4Hz, H-5'), 119.7 (C-6') with 6.89 (dd, J=1.8, 7.8Hz, H-6'), 114.5 (C-2') with 7.07 (d, J= and 72.6 (C-4") with 3.32 (ddd, *J*=3.0, 9.3Hz, H-4").

Table 1. Correlation of	of HSOC	HMBC and	COSY NME	of GGBC 4
Table 1. Colletation	n inqu,	TIME and	CODITION	t of GODC +

$\delta_{ m H}$	HSQC $(\delta_{\text{H-C}})$	HMBC $(\delta_{\text{H-C}})$	COSY (δ _{H-H})
5.17 (H-2)	82.5 (C-2)	C-2, C-3, C-1', C-2', C-6', C-9, C-4	H-3
4.67 (H-3)	76.4 (C-3)	C-2, C-3, C-4, C-1', C-1"	H-2
5.96 (H-6)	96.2 (C-6)	C-4, C-5, C-6, C-7, C-8, C-9, C-10	
5.96 (H-8)	95.1 (C-8)	C-4, C-5, C-6, C-7, C-8, C-9, C-10	
7.07 (H-2')	114.5 (C-2')	C-2, C-3', C-6'	
6.86 (H-5')	115.2 (C-5')	C-1', C-3'	
6.90 (H-6')	119.7 (C-6')	C-2, C-2', C-3'	
4.08 (H-1")	100.5 (C-1")	C-3, C-1", C-2", C-5"	H-2"
3.55 (H-2")	70.6 (C-2")	C-3", C-4"	H-1"
3.64-3.65 (H-3")	71.3 (C-3")	C-2", C-4"	H-4"
3.32 (H-4")	72.6 (C-4")	C-5", C-3", C-6"	H-3", H-5"
4.20 (H-5")	69.0 (C-5")		H-4", H-6"
1.13 (H-6")	17.1 (C-6")	C-6", C-5", C-4"	H-5"

The spectral data of ¹H-¹³C HMBC NMR was revealed 11 correlations. HMBC is heteronuclear multiple bond correlation. This eleven correlations were showed in Figure 2. The correlations of ¹H-¹H COSY, ¹H-¹³C HSQC and ¹H-¹³C HMBC of GGBC 4 were showed in Table 1. These NMR data was compared to the astilbin reported data [5, 6, 7, 8]. Table 2 was showed a synchronize data of GGBC 4 with astilbin.

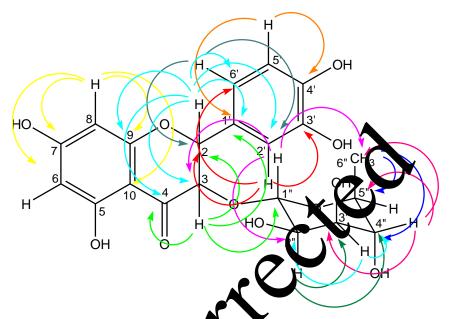


Figure 2. Heteronuclear multiple bond H-13C HMBC) connectivity of GGBC 4

Combination of all spectral data of ¹H, ¹³C-APT, H-H COSY, ¹H-¹³C HSQC and ¹H-¹³C HMBC NMR and IR spectrogram could determined the compound GGI C 4 was consistent to astilbin as structured in Figure 3 [5, 6].

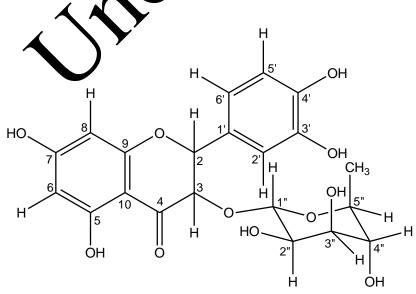


Figure 3. Astilbin

Table 2. ¹H and ¹³C NMR spectral data of GGBC 4 * and astilbin **

Position of carbon and proton	Chemical shift, δ (ppm) carbon GGBC 4 *	Chemical shift, δ (ppm) carbon Astilbin **	Chemical shift, δ (ppm) proton GGBC 4 *	Chemical shift, δ (ppm) proton Astilbin **				
Aglycone								
2	82.5	84.8	5.17 (d, <i>J</i> =10.8Hz)	5.06 (d, <i>J</i> =10.0Hz)				
3	76.4	79.4	4.67 (d, <i>J</i> =10.8Hz)	4.57 (d, <i>J</i> =10.0Hz)				
4	195.2	196.7						
5	166.9	166.3	11.92 (s, OH)					
6	96.2	98.2	5.96 (dd, <i>J</i> =1.8, 13.5Hz)	5.89 (d, <i>J</i> =2.1Hz)				
7	164.4	169.7	9.98 (brs, OH)					
8	95.0	97.2	5.96 (dd, <i>J</i> =1.8, 13.5Hz)	5.91 (d, <i>J</i> =2.1Hz)				
9	162.9	164.9						
10	101.5	103.2		O'				
1'	128.1	130.0)				
2'	114.5	117.1	7.07 (d, <i>J</i> =1) (Hz)	6.95 (d, <i>J</i> =1.8Hz)				
3'	146.0	147.3	8.25 (d, J=15-6Hz, QH)					
4'	145.2	148.1	8.25 (d, J=15.6Hz, OH)					
5'	115.2	116.3	6.86 (d, 8.4 Iz)	6.80 (d, <i>J</i> =8.2Hz)				
6'	119.7	121.3	6.89 (da, J=1.8, 7.8 Hz)	6.84 (dd, <i>J</i> =1.8,8.2Hz)				
	Rhamn							
1"	100.5	102.9	4.08 (s)	4.04 (brs)				
2"	70.6	72.6	3.79 (d, $J=3.0$ Hz, OH),	3.53 (brd, J=3.3Hz)				
			3.55 (s)	,				
3"	71.3	72.0	3.97 (d, J=3.6Hz, OH),	3.64 (dd, <i>J</i> =3.3,9.6Hz)				
			3.64-3.65 (m)	, , , , ,				
4"	72.6	76	3.82 (OH),	3.32 (t, J=9.6Hz)				
	1		3.32 (ddd, J=3.0, 9.3 Hz)	,				
5"	69.0	77.3	4.20 (dd, <i>J</i> =6.0, 9.6Hz)	4.26 (m)				
6"	17.2	18.6	1.13 (d, <i>J</i> =6.6Hz)	1.18 (d, <i>J</i> =6.2Hz)				

Reference Astilbin: Guo et a. 2007.

Conclusion

The identification of compound GGBC 4 only using Nuclear Magnetic Resonance (NMR). It is ¹H, ¹³C-APT, ¹H-¹³C HSQC, ¹H-¹H COSY and ¹H-¹³C HMBC NMR. Even though only one technique, the compound could be defined as known compound astilbin, a flavonoid glycosides. Therefore, NMR is the most essential tools in structural identification beside other chromatography. NMR spectroscopy also a very useful method in various fields of pharmaceutical sciences like pharmaceutical analysis, medicinal chemistry, natural product chemistry and pharmaceutical technology.

Acknowledgement

This research was financially supported by Ministry of Agriculture and Agro-based Industry (MOA), MARDI, UKM grant (grant No. UKM-ST-06-FRGS0110-2009, UKM-GUP-2011-205, UKM-DLP-2012-033). We are grateful to Dr Shamsul Khamis for the assistance in identifying plant material and Mr. Mohd. Zahid Md. Yusoff for analyzing NMR.

^{*} Recorded in CD_3COCD_3 at δ MHz, ** Recorded in $CDOD_3$ at 300MHz. Chemical shift, δ values in ppm and coupling constant (*J*) values in Hz. Splitting patterns: s, singlet; brs, broad singlet; d, doublet; dd, doublet of doublets; m, multiplets.

References

- 1. www.nationalherbarium.nl. (2009). *Cratoxylum arborescens* (Vahl) Blume, nationalherbarium [cited 25 Oct 2009].
- 2. Pattanaprateeb, P., Ruangrungsi, N. & Cordell, G. A. (2005). Cytotoxic Constituents from *Cratoxylum arborescens*. *Planta Medica*, 71(2): 181-183.
- 3. Reutrakul, V., Chanakul, W., Pohmakotr, M., Jaipetch, T., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T., Prabpai, S., Kongsaeree, P. & Tuchinda, P. (2006). Anti-HIV-1 Constituents from Leaves and Twigs of *Cratoxylum arborescens. Planta Medica*, 72: 1433-1435.
- 4. Reutrakul, V., Chanakul, W., Pohmakotr, M., Jaipetch, T., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T., Prabpai, S., Kongsaeree, P. & Tuchinda, P. (2006). Anti-HIV-1 Constituents from Leaves and Twigs of *Cratoxylum arborescens. Planta Medica*, 72: 383-389.
- 5. Guo, J., Qian, F., Li, J., Xu, Q. & Chen, T. (2007). Identification of a New Metabolite of Astilbin, 3-*O*-methylastilbin, and its Immunosuppressive Activity Against Contact Dermatitis. *Clinical Chemistry*, 53 (3): 465–471.
- 6. Cintra, P., Malaspina, O., Petacci, F., Fernandes, J. B., Bueno, O. C., Vieira, P. C. & Silva, M. F. G. F. (2002). Toxicity of *Dimorphandra mollis* to Workers of *Apis mellifera*. *Journal of the Bazillian Chemical Society*, 13 (1): 115-118.
- 7. Goetz, G., Fkyerat, A., Metais, N., Kunz, M., Tabacchi, R., Pezet, R. & Pont, (1997). Resistance Factors to Grey in Grape Berries: Identification of Some Phenolics Inhibitors of Borry. Inerea Stilbene Oxidase. *Phytochemistry*, 52: 759-767.
- 8. Trousdale, E. K. & Singleton, V. L. (1983). Stilbin and Engeltin in Or pes and Wine. *Phytochemistry*, 22 (3): 619-620.

