

THE EFFECT OF GAMMA IRRADIATION ON THE CHEMICAL STRUCTURE AND SURFACE CHARACTERISTICS OF DIPALMITOYLPHOSPHATIDYLCHOLINE (DPPC)

(Kesan Sinaran Gama ke atas Struktur Kimia dan Ciri Permukaan Dipalmitoilfosfatidilkolina (DPPC))

Hur Munawar Kabir Mohd¹, Ainee Fatimah Ahmad¹, Faizal Mohamed¹, Nursaidatul vafadillah Kamaruzaman¹, Ng Wei Ling¹, Poh Roe Jin¹, Muhamad Samudi Yasir¹, Mohd Hafez Mohd Isa³, Suria Badi², Shahidan Radiman¹ and Irman Abdul Rahman¹*

¹School of Applied Physics,

²School of Chemical Sciences and Food Technology,

Faculty of Scince & Technology, Universiti Kebangsaan Malaysia, \$200 \text{ Agi, 5 langor, Malaysia.}

³Industrial Chemistry Technology Progration

Faculty of Science & Technology,

Universiti Sains Islam Malaysia, Bandar Baru Nilai, \$2800 No. 11, Negeri Sembilan.

*Corresponding author: v in@ km.my

bstrac

Dipalmitoylphosphatidylcholine (DPPC) is one of abundant lipids in the human body and carries out important physiological functions such as liver protection as g in ections. This study was conducted to investigate the effect of ionising radiation on the chemical structure and s acteristic of DPPC. Synthetic DPPC was dissolved in chloroform ace ch (1mg/ml) and irradiated with Cobalt-60 (do - 200 Gy). The change in surface characteristics due to gamma irradiation was determined by means of me olayer compression isotherms using a Langmuir trough. From the change in the isotherm features, the threshold dose the surface characteristics of the DPPC monolayer was determined to be 60 Gy. With increasing dose value, the feature in the DPPC isotherm became shorter and was shifted to higher surface pressures. Analysis using H rmance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) suggested that the chemical structure of DPPC and produced two main radiolytic products, namely gamma irradiation of DPPC d 314 g/mol) and phosphatidic acid, PA (~718.916 g/mol) with an average percentage of lisophosphatidylcholin LPC (~4) LPC and PA of 23% and 1%, respe

Keywords: dipalmitoylphospharedylcholine (DPPC), Langmuir monolayer, High Performance Liquid-Chromatography (HPLC), Mass-Spectrometer (MS), gamma radiation

Abstrak

Dipalmitoilfosfatidilkolina (DPPC) adalah antara lipid dengan kelimpahan yang tinggi dalam badan manusia dan terlibat dalam fungsi fisiologi penting seperti perlindungan hati dan penentangan jangkitan. Kajian ini dijalankan untuk menentukan kesan sinaran gama ke atas struktur kimia dan cirian permukaan monolapisan DPPC. DPPC sintetik dilarutkan dalam kloroform (1mg/ml) dan disinarkan dengan punca sinar gama Kobalt-60 (julat dos 50 – 200 Gy). Perubahan pada cirian permukaan isotherma pemampatan monolapisan DPPC akibat kesan sinaran gama ditentukan dengan menggunakan Palung Langmuir. Daripada perubahan ciri pada isoterma pemampatan yang diperolehi, dicadangkan dos ambang yang mula memberikan kesan ke atas kerosakan struktur DPPC bermula pada sekitar 60 Gy. Dengan peningkatan dos dedahan, ciri dataran pada lengkung isoterma DPPC menjadi semakin pendek dan berganjak kepada tekanan permukaan yang lebih tinggi. Analisis dengan menggunakan Kromatografi Cecair Prestasi Tinggi (HPLC) dan Spektrometri Jisim (MS) menentusahkan bahawa struktur kimia asal DPPC termusnah dan membentuk dua hasil radiolitik iaitu lisofosfatidilkolina, LPC (~495.3142 g/mol) dan asid fosfatidik, PA (~718.916 g/mol) dengan purata peratusan LPC dan PA masing-masing adalah 23% dan 74%.

Kata kunci: dipalmitoilfosfatidilkolina (DPPC), monolapisan Langmuir, Kromatografi Cecair Prestasi Tinggi (HPLC), Spektrometri Jisim (MS), sinar gama

Introduction

Ionising radiation has been used widely in medical application as a tool in diagnostic imaging, nuclear medicine and radiotherapy. Therefore, safety of living organism exposed to radiation that causes damages or tissue deformity appears to be a major concern. However, there are still few studies that investigate the effects of gamma radiation on lipids. In this study, the di-saturated and zwitterionic dipalmitoylphosphatidylcholine (DPPC) is used because it is the most abundance phospholipid and can be found almost in a whole body that functioned to protect liver, fight toxicity and infection in body system. [1].

Gamma irradiation has been found to be effective in depolymerising and cleaving molecular chains ascribed to the decay processes. This is related to free radicals generated at the primary stage of gamma irradiation, which extends with changes in chemical composition as well as its physiological functions [2]. It has also been reported in previous studies that radiation, given to patients for the purpose of diagnosis and there we have a caused an onset of joint pain and loss of joint fluidity. This is due to the unacceptable high radiation does a livered to non-targeted organs because of the leakage from the treated joints [3].

In this study, there are three main objectives. The first objective is to study ffects of ionizing radiation on DPPC monolayer surface structures. A basic technique used to study the or of monolayers is the socalled Langmuir film balance. The effects are observed from the surface ressure-area isotherms obtained upon compression of lipid spread on aqueous subphase. The second objective dentify the chemical composition formed from the structural damage of irradiated DPPC at doses ran e 0 G to 200 Gy. High Performance Liquid Chromatography (HPLC) and Mass Spectrometry (MS) weg tain and verify chemical composition formed after irradiation. The third objective is to compare the idadiation results obtained from HPLC method and DPPC monolayer surface pressure-area isotherms comparison allows us to determine the threshold dose of gamma radiation damage.

Material and Methods

Research materials

Synthetic DPPC (1,2-dipalmitoyl-sn-glycerol 8-phosthocholine) was purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA). The samples were dissolved a concentration of 1 mg/ml and all samples were irradiated with gamma irradiation. The samples irradiated at higher doses (60 Gy to 200 Gy) were supplemented with Fricke dosimetation as a supplemented with Fricke d

Sample preparation

DPPC monolayer surface were Judied using the surface pressure-area isotherms obtained from spreading of lipid on the Langmuir through. An surface pressure-area measurements were performed on deionised water and had a resistivity greater than 18 M Ω m [4]. The chemical composition percentage of irradiated DPPC were analysed with HPLC and MS.

Irradiation Setup

The DPPC was irradiated with a ⁶⁰Co source at ambient temperature by GammaCell 220 Excel in vials at a dose rate of 4.20kGy/h. Each vial containing DPPC were irradiated with 5, 10, 20, 30, 40, 50, 60, 90, 130, 170 and 200 Gy gamma radiation, with 0 Gy as a control. Time required to irradiate each samples were determined by the following equation (1);

$$A = A_0 e^{-\lambda t} \tag{1}$$

Sample Analysis

The surface structure damage of DPPC monolayer was determined using surface pressure-area isotherms and comparisons between plateau region slope of the graph. Analysis of HPLC and MS will confirm the chemical composition formed after irradiation.

Results and Discussion

Patterns formed from compression of DPPC monolayer

The obtained results for control and irradiated DPPC (Figure 1) exhibits a clear phase transition from liquid expanded to the liquid condensed state. The difference of slope of plateau region between each dose is observed. Each of the DPPC monolayer irradiated from 0 to 50 Gy seems to pass from an expanded to a condensed phase without any significant change in the isotherm slope. Increasing the dose from 60 Gy to 200 Gy gamma radiation exhibit a significant pattern of shifting the isotherms to larger molecular areas.

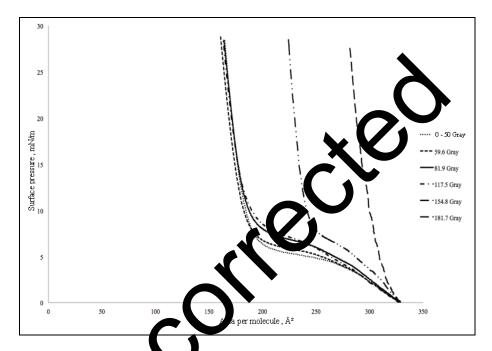


Figure 1. Surface pre-re-a a is therms of DPPC monolayer at different radiation dose

As the radiation dose has increa d, the slope of the plateau region also eventually increased, as observed in Figure 2. According to Hsu et 1 (20%), the characteristics of the plateau's slope are a contribution of several second phase, inclusion, impurities and segregation. Charge difference or ion formation on the surface of DPPC also influences the electrostatic interaction characteristic of the air-water interface of DPPC [5, 6].

High Performance Liquid Chromatography studies

HPLC analysis was performed to obtain the chemical composition of irradiated DPPC. Figure 3 shows two linear line that refers to radiolytic products formed i.e lysophosphatidylcholine, LPC and phosphatidic acid, PA [4]. Identification of the chemical compound formed was based on reversed-phase HPLC work principal, where more polar compounds are eluted first [1, 7]. It is known that LPC is a polar compound and PA is a non-polar compound. From the absorption unit versus operation time graph obtained from HPLC analysis, it is found that gamma radiation formed two radiolytic products caused by DPPC structural damage and gave different chemical composition percentage for each dose.

Upon gamma irradiation, phospholipid tends to experience oxidation process and hydrolysis degradation reaction [8]. Oxidation occurs between cells that involve alternative mechanism after phospholipid has been irradiated which will form free radicals and caused damage to cells structure. Hydroxyl radical, •OH are one of the formed radical and it reacts actively with irradiated cell and caused lipid oxidation [9].

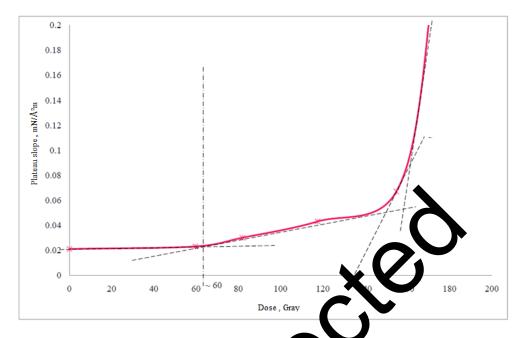


Figure 2. Plateau slope difference between each irradiated doses

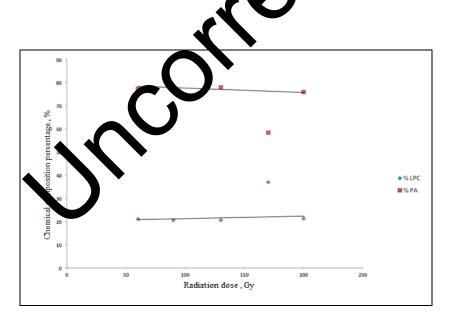
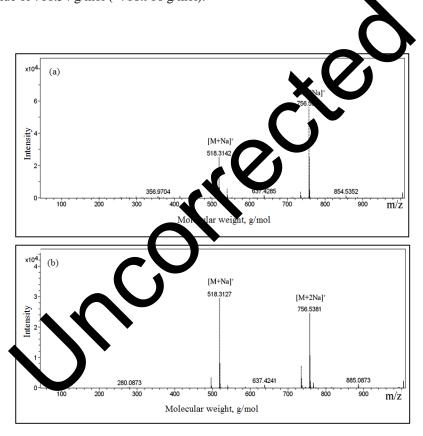



Figure 3. Percentage of chemical compound formed from HPLC separation

Mass Spectrometry studies

MS analysis provides mass spectrum information that can be used to identify molecule. In MS analysis, spectrum peak represents ions that are formed. The peak height depends on the intensity, whilst ions have their own specific abundance [10]. For this analysis, positive ion mode was used. The positive ions used were H⁺ ion and Na⁺ and these ions interact with samples to produce mass spectrum information.

Figure 4 shows the spectrum formed together with each individual molecular mass. Each peak represents the chemical compound formed after DPPC was irradiated with gamma radiation. It has been identified that the compounds were combined with Na to form [M+Na⁺] at an average peak of 518.31 g/mol (Figure 4(a)-(e)). Hence, the molecules formed at this peak have an average molecular mass of 495.31 g/mol, which is similar to the LPC molecular mass of approximately 495.63 g/mol. At the average peak of 756.54 g/mol (Figure 4(a)-(e)), it was identified that molecule formed was [M+2Na⁺]. With a 46 unit molecular mass difference (molecular mass for every Na is 23 unit), it was identified that the compounds formed at this peak were phosphatidic acid, with an average molecular mass value of 711.54 g/mol (~718.916 g/mol).

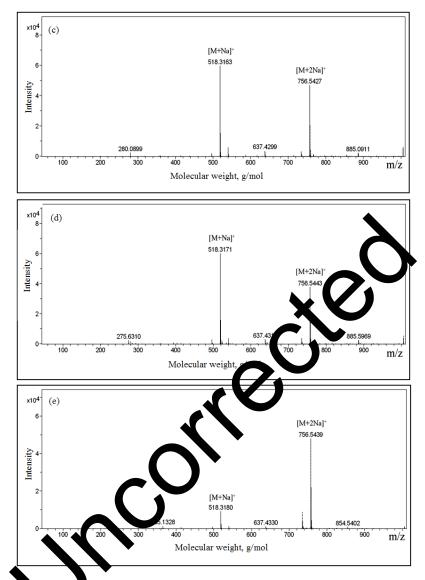


Figure 4. Mass spectrum of camples irradiated with (a) 56.5 Gy, (b) 84.8 Gy, (c) 122.4 Gy, (d) 160.1 Gy and (e) 188.2 Gy dose

Conclusion

Based on the surface pressure-area isotherms data, it is noted that for gamma irradiation lower than 50 Gy does not significantly affect the DPPC monolayer surface structure. At higher dose (59.6, 81.9, 117.5, 154.8 and 181.7 Gy), the results show the existence of the effect of ionising radiation on the characteristics of the DPPC monolayer surface. Based on the plateau slope pattern, the dose effect on the surface characteristics of DPPC monolayer was seen to start at approximately 60 Gy. With increasing dose values, the plateau of the DPPC isotherm curve became shorter and shifted to higher surface pressure. Analysis of MS confirms that the radiolytic products formed were lysophosphatidylcholine, LPC and phosphatidic acid, PA with average percentage 22.94% and 74.38% respectively. A previous study showed that only LPC and PA were formed as the major radiolytic products of gamma irradiation on phospholipids at dose of 9.66 kGy [11]. In summary, our experiments clearly show that DPPC has suffered damage to its chemical compound even at the lower doses (< 50 Gy). However, the surface structure displayed via the Langmuir monolayer remained intact with a gradual shift that depicts structural change starting from the dose of

60 Gy. This suggests the ability of DPPC to sustain its surface structure and functions at higher dose, even though its chemical structures have been altered at the lower doses of 50 Gy.

Acknowledgement

The authors would like to acknowledge funding from UKM in this work through research grants UKM-ST-07-FRGS0023-2010, ERGS/1/2012/STG02/UKM/02/1, UKM-ST-07-FRGS0018-2010 and UKM-PTS-011-2010. We would also like to thank the School of Chemical Sciences and Food Technology for extending their facilities to us.

References

- Singleton, J., A., Ruan, M., Sanford, J., H., Haney, C., A. & Stikeleather, L., F. (1999). Separation and Characterization of Peanut Phospholipid Molecular Species Using High-Performance Liquid Chromatography and Fast Atom Bombardment Mass Spectrometry. Journal of the American Oil Chemists' Society. 76(1): 49-56.
- Kim, J. K., Srinivasan, P., Kim, J. H., Choi, J., Park, H. J., Byun, M. W. & Lee, J. W. (2008). Structural and
- antioxidant properties of gamma irradiated hyaluronic acid. *Journal of Food Chemistry*. 109(2008): 763-770. Wang S.J. (2001). Histologic study of effects of radiation synovectomy with Remium-1888 microsphe mium-1888 microsphere. Journal of Nuclear Medicine and Biology. 28(2002): 727-732.
- Harishchandra, R. K., Saleem, M. & Galla, H. J. (2010). Nanoparticle interaction with model lung surfactant monolayers. Journal of Royal Society Interface. 7: 15-26.
- erol (DMPG) monolayers: Garidel, P. & Blume, A. (2005). 1,2-Dimyristoyl-sn-glyceroinfluence of temperature, pH, ionic strength and binding of alkalinarth Chemistry and Physics of Lipids. 138(2005): 50-59.
- Hsu, S. E., Beibutian, V. M. & Yeh, M. T. (2002). Preparation of hydrogen storage alloys for applications of hydrogen storage and transportation. Journal of Alloys and Comp unds.. 30-332(2002): 882-885.
- Sanagi, M. M. 1998. Kaedah pemisahan dalam analisis kir ercetakan Surya Sdn. Bhd.
- Mengesha, A. E. & Bummer, P. M. (2010). Simple aphic method for simultaneous analyses of cids. Journal of American Association of phosphatidylcholine, lysophosphatidylcholine and ree Pharmaceutical Scientists. 1-8.
- 9. Hallahan, D. E., Virudachalam, S., Sherman, L, Ht. erman, E., Kufe, D. W. & Weichselbaum. (1991). by protein kinase C following activation by ionizing Tumor necrosis factor gene expression cer Research. 51: 4565-4569 radiation. Journal of American Associatio
- uction to mass spectrometry. 4th edition. Chichester: John 10. Watson, J. T. & Sparkman, O. D. Wiley & Sons Ltd.