

PETROLEUM HYDROCARBON IN SURFACE SEDIMENT FROM COASTAL AREA OF PUTATAN AND PAPAR, SABAH

(Petroleum Hidrokarbon di Dalam Sedimen Permukaan daripada Pesisiran Pantai Putatan dan Papar, Sabah)

Siti Aishah Mohd Ali^{1*}, Rohana Tair¹, Soon Zhi Yang¹, Masni Mohd Ali²

¹Water Research Unit, School of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia ²School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

*Corresponding author: ctaishah@ums.edu.my

Abstract

Total petroleum hydrocarbons (TPH) and percent total organic carbon (TOC) were investigated in surface sediments from coastal area of Papar and Putatan, Sabah. Samples were collected in five different stations in each area by using Ponar grab sampler. Samples were extracted with Soxhlet, concentrated and analyzed by using UV/VIS spectrophotometer. The overall mean and range of TPH concentrations in the sediments from coastal area of Papar and Putatan were 1.95~(0.53-4.59~mg/kg~dw Miri crude oil equivalents) and 0.85~(0.26-1.64~mg/kg~dw Miri crude oil equivalents) respectively. Meanwhile, the TOC ranged from 0.81~-2.32% and 0.35~-0.81% respectively. Statistical analysis using Pearson correlation showed no significant differences between TPH and TOC (p < 0.05) in both areas.

Keywords: Total petroleum hydrocarbons, surface sediment

Abstrak

Jumlah petroleum hidrokarbon (TPH) dan peratus jumlah karbon organik (TOC) telah dikaji dalam sedimen permukaan dari kawasan pesisiran pantai Papar dan Putatan, Sabah. Sampel dikumpul dari lima stesen yang berbeza di setiap kawasan dengan menggunakan *Ponar grab sampler*. Sampel telah diekstrak menggunakan Soxhlet, dipekatkan dan dianalisis menggunakan UV / VIS spektrofotometer. Nilai min dan julat keseluruhan kepekatan TPH dalam sedimen dari kawasan persisiran pantai Papar dan Putatan adalah 1.95 (0.53 – 4.59 mg/kg bk, setara dengan minyak mentah Miri) dan 0.85 (0.26 - 1,64 mg/kg bk, setara dengan minyak mentah Miri) masing-masing. Sementara itu, julat TOC adalah di antara 0.81 – 2.32% dan 0.35 – 0.81% masing-masing. Analisis statistik menggunakan korelasi Pearson menunjukkan tiada perbezaan yang signifikan di antara TPH dan TOC (p <0.05) di kedua-dua kawasan.

Kata kunci: jumlah petroleum hidrokarbon, sedimen permukaan

Introduction

Hydrocarbons are ubiquitous constituents in aquatic sediments, relatively stable in the marine environment and often accumulate in biological communities and ecosystems, thus representing a human health hazard [1, 2]. Their sources can be either natural or anthropogenic. Hydrocarbons generated by biological or diagenetic processes naturally occur at low content in sediments, and are part of the natural hydrocarbon baseline of an ecosystem [3]. Aliphatic hydrocarbons derive from a variety of natural sources including terrestrial plants and marine algae [4] but they are also major components of petroleum. In marine sediments, especially in coastal areas, human activities are believed to be an important influence on hydrocarbons. Those activities include oil transportation and spill, shipping, and industrial, storm water and domestic discharge.

The subject of the research is sediment because sediment and sand is a good indicator for oil pollution in an area than the assessment of hydrocarbon in the water [5]. Bottom sediments of most aquatic systems are known to act as

a reservoir or sink for petroleum hydrocarbons, trace metals, and some other pollutants [6]. Moreover, sediments are composite materials, which consist of inorganic components, mineral particulates and organic matter in various stages of decomposition, and are well known for their sensitive indicators between natural and anthropogenic variables [7]. The organic matter content of sediments, quantified by the concentration of total organic carbon (TOC), is thought to play an important role in the accumulation and release of different micro pollutants [8]. The input of organic matter to coastal systems is indeed the triggering mechanism leading to ecological concern [9]. TOC measurement provides information on all organic substance content in water or sediments [10, 11]. These substances either from natural sources, such as humic acids, mineral oils, solvents, pesticides, poly aromatic hydrocarbons or chlorinated organic compounds [12]. However, the quantity of TOC in the sediments/soils depends on the amount of organic matter added, sediment texture such as clay content, and climatic conditions [13].

Due to the lack of information regarding the concentration of petroleum hydrocarbons in the sediments of the coastlines of Sabah, this study was designed to determine the total hydrocarbon concentration (TPH) and total organic carbon (TOC) in the surface sediment of Papar and Putatan, Sabah (Table 1). Correlations with surface sediment TPH and TOC from sampling stations are discussed.

Area	Station	Coordinate	
	A1	N 05°44.016', E 115°53.387'	
Papar	A2	N 05°44.925', E 115°53.672'	
	A3	N 05°45.744', E 115°54.323'	
	A4	N 05°45.823', E 115°55.594'	
	A5	N 05°46.412', E 115°56.731'	
Putatan	B1	N 05°51.518', E 116°02.043'	
	B2	N 05°51.854', E 116°02.168'	
	В3	N 05°52.235', E116°02.331'	
	B4	N 05°52.715', E116°02.514'	
	B5	N 05°53.079', E116°02.250'	

Table 1. Description of station in Papar and Putatan, Sabah.

Experimental

This study was conducted in January 2011. Surface sediment samples (0-1 cm) were collected using Ponar grab sampler from 5 stations in each area as shown in Table 1. Analysis of the top (1-2 cm) surface layer provides baseline data for present-day pollution [8, 14, 15, 16]. 10 g of sediments was dried in the oven at 105 °C for 2 hours for the moisture content analysis. The procedure used for TPH analysis was standard method sediment/sludge APHA 5520E [17]. 10 g of sediment was extracted with saturated hydrochloric acid (HCl) and 15 g magnesium sulphate (MgSO₄). After mashing the whole sediment sample, the sample was extracted with Soxhlet for 4 hours with 250 ml petroleum ether. The extracts were saturated using rotary evaporator and cleaned-up on silica gel columns. The eluate from the columns was concentrated with pure nitrogen and the TPH were analysed by using UV/VIS spectrophotometer Lambda 25 Perkin Elmer (excitation was at 239 nm and emission at 259 nm). A calibration curve was generated using Miri crude oil as arbitrary standard. Percentage of TOC was measured based on United Nations Environment Programme (UNEP)/MAP Athens (2006) method [18].

Results and Discussion

Table 2 shows the concentration of TPH and percentage of TOC in sediment collected along the coastal area of Papar and Putatan, Sabah. The overall range and mean of the TPH concentrations in both areas were 0.26 - 4.59 and 1.40 mg/kg dw Miri crude oil equivalents respectively, while TOC were 0.35 - 2.32% and 1.15% respectively.

Area	Station	TPH (mg/kg) dw	TOC (%)
Papar	A1	2.82	0.81
	A2	4.59	1.91
	A3	0.79	2.09
	A4	1.05	2.32
	A5	0.53	1.04
	Mean	1.95	1.63
Putatan	B1	0.26	0.64
	B2	1.64	0.75
	В3	1.44	0.35
	B4	0.39	0.81
	B5	0.54	0.81
	Mean	0.85	0.67

Table 2. The TPH concentrations and TOC in sediment from Papar and Putatan, Sabah.

The result shows that the higher TPH concentrations are found at station A2 which is Papar area. The range of TPH concentration at Papar area is 0.53 - 4.59 mg/kg dw and the mean is 1.95 mg/kg dw Miri crude oil equivalents. Meanwhile, the lower TPH concentrations are found at station B1 which is Putatan area. The range of TPH concentration at Putatan area is 0.26 - 1.64 mg/kg dw and the mean is 0.85 mg/kg dw Miri crude oil equivalents. The ranged of the TOC percentage in Papar and Putatan are 0.81 - 2.32% and 0.35 - 0.81% respectively. The highest level of TOC was recorded at station A4 (2.32%), meanwhile the lowest level was recorded at station B3 (0.35%). The mean of TOC at Papar area (1.6%) was twice the amount of TOC at Putatan area (0.67%).

The mean TPH concentration at Papar area was found to be twice higher than the mean at Putatan area. This is due to the main activity of fishing by boat. Papar area is well-known as a place which produces dried anchovy and dried salted fish. Boat is used as the main transportation to travel from land to reach the *bagang* (the traditional house made by wood at the ocean to catch anchovy). In addition, the water flushing out from the Papar River may contribute to the sources of hydrocarbon from land activities and vehicles which is close to the station A2. According to Tahir *et al.* [19], the variation between estuarine and coastal area may attribute to an insignificant input from inland hydrocarbon sources or due to efficient mixing in the estuarine zone. Alfred *et al.* [20] stated that the migration of hydrocarbon in sediment associate mainly with hydrothermal minerals and deep ground waters. So, the difference TPH concentrations in Papar and Putatan area may due to the differences in physical and biological characteristic of coastal area such as the sediment size, the composition of sediment and the species of organism present.

A comparison of the TPH from the present study with values reported in other parts in Malaysia is presented in Table 3. The results indicate that the TPH levels in Papar and Putatan is much lower than that found in Peninsular Malaysia [19, 21, 22, 23, 24]. The main contribution to the hydrocarbon pollution in Peninsular Malaysia was by shipping activities, illegal discharge of oily waste water by vessels and through the routine handling of crude oil at the terminals of refineries [22, 23, 24]. Tahir *et al.* [19] conducted a survey in coastal water and sediment of east coast Peninsular Malaysia and their study showed significant differences in the levels of TPH could be directly attributed to much higher maritime activities and major oil production companies along the east coast of Peninsular Malaysia. Abdullah [21] stated that the hydrocarbon concentrations are related not only due to possible sources of hydrocarbon but also the physical characteristic of the sediment samples. Clayey sediment contains more hydrocarbons compared to sandy sediment.

The sources and transportation of sedimentary organic matter composition can be used as physical indicator to the hydrocarbon concentration or organic pollution [25, 26, 27]. However, Simpson *et al.* [28] stated that the relationship between TPH and organic matter of sediment was only significant in a highly contaminated site. Al-Ghadban *et al.* [29] also stated that the efficiency of TOC in indicating TPH level and considered it to be authentic when TPH is present in high concentration. Statistical analysis of the result using Pearson correlation revealed that

Siti Aishah et al: PETROLEUM HYDROCARBON IN SURFACE SEDIMENT FROM COASTAL AREA OF PUTATAN AND PAPAR, SABAH

there is no significant difference between TPH and TOC at both areas (P < 0.05). It means that the level of TPH observed in the sediments of the coastlines of Papar and Putatan do not correlate significantly with TOC content in various stations.

According to the Food and Agricultural Organization [30], sediments containing hydrocarbon levels less than 100 mg/kg dry weight can be classified as unpolluted. Based on this classification, it can be stated that the levels of TPH obtained from the present investigation in both Papar and Putatan area are still below the alarming pollution level.

Table 3. Comparison of petroleum hydrocarbon levels in Papar and Putatan sediment with levels reported in other part in Malaysia.

Location	Petroleum Hydrocarbon in Sediment (mg/kg dw)	References
East coast Peninsular Malaysia	0.8 - 20.0	[19]
Straits of Johor	14.259 – 361.371	[22]
Port Dickson	21.73 – 74.50	[23]
Pulau Langkawi, Pulau Ketam, Tanjung Piai, Pulau Tioman and Kemaman.	18.2 – 847.4	[21]
Straits of Malacca	52 - 128	[24]
Papar and Putatan, Sabah	0.26 - 4.59	Present study

Conclusion

TPH and TOC in sediment from coastal area of Papar and Putatan, Sabah were quantified and compared. The mean TPH and TOC in surface sediment from Papar coastal area are 1.95 mg/kg dw Miri crude oil equivalents and 1.63% while at Putatan area are 0.85 mg/kg dw Miri crude oil equivalents and 0.67% respectively. The sediment samples in both areas can be concluded as non-polluted by petroleum hydrocarbon based on with FAO (1982) standard.

Acknowledgement

The authors would like to acknowledge the financial support from Universiti Malaysia Sabah and Miri Crude Oil Terminal (MCOT) in this study.

References

- 1. Lipiatou, E. & Saliot, A. (1991). Hydrocarbon contamination of the Rhone delta and western Mediterranean. *Marine Pollution Bulletin*, 22: 297-304
- 2. Wakeham, S.G. (1996). Aliphatic and polycyclic aromatic hydrocarbons in Black Sea sediments. *Marine Chemistry*, 53: 187-205.
- 3. Commendatore, M.G. & Esteves, J.L. (2004). Natural and anthropogenic hydrocarbons in sediments from the Chubet River (Patagonia, Argentina). *Marine Pollution Bulletin*, 48: 910-918.
- 4. Saliot, A. (1981). *Natural hydrocarbons in sea water in Marine Organic Chemistry*. E. Duursma & R. Dawson. Eds. Elsevier. Amsterdam, 327-374.
- Law, A.T. & Ravinthar V. (1989). Petroleum hydrocarbon along the coastal areas of Port Dickson. *Pertanika*, 12(3): 349-355.
- 6. Horowit, A.J. (1991). A primer on sediment-trace element chemistry. 2nd edition. Chelsea, MI: Lewis Publishers.
- 7. Kucuksezgin, F., Kontas, A., Altay, O., Uluturhan, E. & Darilmaz, E. (2006). Assessment of marine pollution in Izmir Bay: Nutrient, heavy metal and total hydrocarbon concentrations. *Environment International*, 32: 41-51.

- 8. Massoud, M.S., AI-Abdali, F. & AI-Ghadban, A.N. (1996). Bottom sediments of the Arabian Gulf; II. TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of Kuwait oil slick. *Environmental Pollution*, 93(3): 271-284.
- 9. Dell'Anno, A., Mei, M.L., Pusceddu, A. & Danovaro, R. (2002). Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. *Marine Pollution Bulletin*, 44: 611–622.
- 10. Dojlido, J. & Best, G. (1993). Chemistry of water and water pollution. Ellis Horwood Limited England.
- 11. Zerbe J. (1993). Hydrocarbons and its derivatives in water. Environmental and Natural Resources Protection.
- 12. Al Darwish, H.A., Abd El-Gawad, E.A., Mohammed, F.H. & Lotfy, M.M. (2005). Assessment of organic pollutants in the offshore sediments of Dubai, United Arab Emirates. *Environmental Geology*, 48: 531–542.
- 13. Jenkinson, D.S. (1990). Studies on the decomposition of plant material in soil, IV: The effect of rate of addition. *Journal of Soil Science*, 28: 417.
- 14. AI-Abdali, F., Massoud, M.S. & A1-Ghadban, A.N. (1996). Bottom sediments of the Arabian Gulf; IIL Trace metal contents as indicators of pollution and implications for the effect and fate of Kuwait oil slick. *Environmental Pollution*, 93(3): 285-301.
- 15. Literathy, P. & Foda, M. (1985). KISR activities on Nowruz oil slick. EESGEN Report KISR 1827. Kuwait: Kuwait Institute for Scientific Research.
- Michel, J., Hayes, M.O., Keenan, R.S., Sauer, T.C., Jensen, J.R. & Narumalani, S. (1993). Contamination of nearshore subtidal sediments of Saudi Arabia from the Gulf War oil spill. *Marine Pollution Bulletin*, 27: 109-116.
- 17. American Public Health Association (APHA). (2005). Standard Methods for the Examination of Water and Wastewater. 21st edition. American Public Health Association.
- 18. United Nations Environment Programme (UNEP). (2006). Methods for Sediment Sampling and Analysis. United Nations Environment Program.
- 19. Tahir, N.M., Abdullah, A.R. & Shanmugam, S. (1997). Determination of total hydrocarbon concentration in coastal waters and sediments off the east coast of Peninsular Malaysia. *Environmental Geochemistry and Health*, 19: 67-71.
- 20. Alfred, R.G., Richterb, B., Pikovskiic, Y.I., Chernyanskyc, S.S. & Alexeevac, T.A. (2006). Polycyclic aromatic hydrocarbons as evidence of hydrocarbon migration in marine and lagoon sediments of a recent rift zone (Skjá lfandi and Öxarfjörjur), Iceland. *Chemie der Erde Geochemistry*, 66: 213–225.
- 21. Abdullah, M. P. (1997). Hydrocarbon pollution in the sediment of some Malaysian coastal areas. *Environmental Monitoring and Assessment*, 44: 443-454.
- Abdullah, A.R., Woon, W.C. & Bakar, R.A. (1996). Distribution of oil and grease and petroleum hydrocarbons in the Straits of Johor, Peninsular Malaysia. *Bulletin of Environmental Contamination and Toxicology*, 57: 155-162
- 23. Law, A.T., Ravinthar, V. & Yeong, C.H. (1990). Oil pollution in the coastal waters off Port Dickson, Straits of Malacca. *Pertanika*, 13: 381-387.
- 24. Zakaria, M.P. & Takada, H. (2007). *Case study: Oil spills in the Strait of Malacca, Malaysia*. In: Wang, Z. & Stout, S.A. (eds.) Oil spill environmental forensics. Elsevier, Inc., pg. 489-504.
- 25. Karichknofff, S.W., Brown, D.S. & Scott, T.A. (1996). Sorption of hydrophobic pollutants. *Water Research*, 13: 241–248.
- 26. Pionke, H.B. & Chester, G. (1973). Pesticide sediment water interactions. *Journal of Environmental Quality*, 2: 29–45.
- 27. Rudolf, J., Ahmed, I.R., Medeiros, P.M. & Bernd, R.T.S. (2006). Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river. *Chemosphere*, 64: 1870–1884.
- 28. Simpson, C.D., Mosi, A.A., Cullen, W.R. & Reimer, K. (1996). Composition and distribution of polycyclic aromatic hydrocarbons in surficial marine sediments from Kitimat Harbour. *Science Total Environment*, 181: 265-278.
- 29. Al-Ghadban, A.N., Jacob, P.G. & Abdali, F. (1994). Total organic carbon in the sediments of the Arabian Gulf and need for biological productivity investigations. *Marine Pollution Bulletin*, 28: 356–362.
- 30. Food & Agriculture Organisation (FAO). (1982). The Review of the Health of the Oceans. FAO/IMCO/UNESCO/WMO/WHO/IAEA/UNEP Joint Group of Experts on Scientific Aspects of Marine Pollution (GESAMP).