The Malaysian Journal Of Analytical Sciences Vol 16 No 1 (2012): 12 – 17

 

 

 

FORMATION AND CHARACTERIZATION OF (Tl,M)Sr1212

(M= Bi, Pb, Cr) SUPERCONDUCTING CERAMICS

 

(Penyediaan dan Pencirian Superkonduktor Seramik (Tl,M)Sr1212

(M= Bi, Pb, Cr))

 

A. Ali Yusuf, A.K. Yahya and F. Md. Salleh*

 

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor

 

*Corresponding author: faizah163@salam.uitm.edu.my

 

 

Abstract

The derivatives of Tl1212 phase superconductors were prepared using precursors derived from coprecipitation reaction of appropriate stoichiometric metal acetates and oxalic acid based on nominal starting compositions; Tl0.8Bi0.2Sr2Ca0.8Y0.2Cu2O7, Tl0.5Pb0.5Sr1.8Yb0.2CaCu2O7 and Tl0.9Cr0.1Sr2Ca0.9Pr0.1Cu2O7. The oxalates precursors were calcined at 600 oC for 24 hours following which sintering were done at 870 oC for 1 hour. All three superconducting oxides showed metallic normal state properties with Tc onset of around 100 oC and Tc zero of between 90 –94 oC. The transport critical current density (Jc) of the samples are around 3 – 6 A/cm2 while the room temperature resistivity (r300 K) values are in the range of  7 – 10 mWcm. Powder X-ray diffraction (XRD) patterns of all samples reveals presence of dominant 1212 phase. Scanning electron micrographs reveal fine and irregular shaped grains (<2 mm).

 

Keywords: Tl1212 superconductor, coprecipitation method

 

References

1.       Kim, D.H., Gray, K.E., Kampwirth, R.T., Smith, J.C., Richeson, D.S., Marks, T.J., Kang, J.H., Talvacchio, J. and Eddy, M. (1991), Physica C 177, 431.

2.       Sheng, Z.Z., Dong, C., Fei, X., Liu, Y.H., Sheng, L. and Hermann A.M. (1989), Appl. Phys. Comm. 9, 27.

3.       Li, S. and Greenblatt, M. (1989), Physica C 157, 365.

4.       Sheng, Z.Z., Sheng, L., Fei, X. and Hermann, A.M. (1989), Phys. Rev. B  39, 2918.

5.       Gritzner, G. and Bernhard, K. (1991), Physica C 181, 201-205

6.       Padam, G.K., Raman, V., Dhingra, I. Tripathi, R.B., Rao, S.U.M., Suri, D.K., Nagpal, K.C. and Das, B.K. (1991), J. Phys. Condens. Matter 3, 4269

7.       Salazar, K.V., Peterson, E.J., Holesinger, T.G., Bingham, B., Coulter J.Y., Sebring, R.J., Voight, J.A., Roth E.P. and Halder, P. (1995), IEEE Trans. On Appl.  Supercond. 5, No. 2, 1494.

8.       Md. Salleh, F., Yahya, A.K., Imad, H., and Jumali, M.H. (2005). Physica C  426-431, 319

9.       Bernhard, K and Gritzner, G. (1992), Physica C 196,  259

10.    Sheng, Z.Z, Li, Y.F. and Pederson, D.O. (1991), Solid State Comm. 80, 913 – 915

11.    Abdullah, W.F., Jumali, M.H. and Yahya, A.K. (2003) J. Solid State Sci. Technol. Lett. 10 No. 2 (Supp),  73

12.    Chen, S.K., Lau, K.T. and Abd. Shukor, R. (2002), Mat. Sci. Eng. B 90, 234

13.    Dimos, D., Chaudhari, P. and Mannhart, J. (1990), Phys. Rev. B41, 4038

14.    Jeong, D.Y., Kim, H.K., Kim, Y.C., Lee H.S., Tsuruta, T., Matsui, Y. and Horiuchi, S. (2000), Physica C 330, 169

15.    Kilic, A., Kilic, K. and Senoussi, S. (1998) J. Appl. Phys. 84 No. 6, 3254



Previous                    Content                    Next