The Malaysian Journal of Analytical Sciences Vol 16 No 1 (2012): 62 – 70

 

 

 

COPPER SUPPORTED ON FUNCTIONALISED MCM41 CONTAINING THIOUREA LIGAND AS AN CATALYST IN OXIDATION OF CYCLOHEXENE WITH HYDROGEN PEROXIDE

 

(Sokongan Kuprum kepada MCM41 Terfungsi yang Mengandungi Ligan Tiourea Sebagai Pemangkin Terhadap Tindak Balas Pengoksidaan Sikloheksena dengan Hidrogen Peroksida)

 

Amirah Ahmad1*, Hamizah Md. Rasid1  and Karimah Kassim2

 

1Faculty of Applied Sciences,

2Institute of Science,

 Universiti Teknologi MARA,

 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: my_silberberg@yahoo.com

 

 

Abstract

MCM41 encapsulated with thiourea ligand and copper(II) acetate as catalyst for oxidation reaction is reported. First, MCM41 was modified using 3-aminopropyltriethoxysilane (APTES) and then was encapsulated with thiouracil and copper(II) acetate. The catalyst was characterized  using X-Ray Diffraction (XRD), N2 adsorption, single point BET, Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) and Elemental Analyzer. The characterization results indicated that the catalyst has an ordered hexagonal structure, a narrow pore size distribution, uniform mesopores and a high surface area. Moreover, the results also revealed that thiourea ligand and copper acetate might be encapsulated onto the pores of MCM41. Catalytic activity of the catalyst was tested in the oxidation of cyclohexene using acetonitrile as solvent and hydrogen peroxide as oxidant. The CuO2(acac)-Thio-APS-MCM41 was proven to be a good catalyst for oxidation reaction of cyclohexene with conversion up to 96.1% after 24 h reaction and providing a high selectivity to 2-cyclohexene-1-one.

 

Keywords: MCM41, Thiourea Ligand, Mesoporous Material, Thiouracil

 

References

1.       A.E. Shilov and G.B. Shul’pin, (1997), Activation of C-H bonds by metal complexes. Chem. Rev., 97, pp 2897-2932

2.       L.I. Simandi, (1991), Dioxygen activation and homogeneous catalytic oxidation. Elsevier., pp 57

3.       K.F. Podraze, (1991) Organic building blocks of the chemical industry. Org. Prep. Proced. Int., 23, pp. 217

4.       J.T. Groves, K.V. Shalyaev, J. Lee, (1999), in: K.M. Kadish (Ed.), The Porphyin Handbook. Vol. 4, Academic Press, San Diego, CA, pp 17

5.       R.A. Sheldon, and J.K. Kochi, (2000), Metal-catalyzed oxidations of organic compounds, Academic Press, New York, 1981: G.J.T. Brink, I.W.C.E Arends, R.A. Sheldon, Science 287, pp 1636

6.       J.H. Clark, (2001), Catalysis for green chemistry. Pure Appl. Chem. 73, pp 103-111

7.       H. Nur, S. Ikeda and B. Ohtani*, (2000), Phase-boundary catalysis: a new approach in alkene epoxidation with hydrogen peroxide by zeolite loaded with alkylsilane-covered titanium oxide. Chem. Comm. pp 2235

8.       Eko Adi Prasetyanto and Sang-Eon Park, (2008), Catalytic oxidation of cyclohexene with hydrogen peroxide over Cu(II)-Cyclam-SBA-16 catalyst. ngew. Bull. Korean Chem. Soc., Vol. 29, No. 5, pp. 1033-1037.

9.       R.S. Robert, A. Rafael, A.D. James, W.R. Thatcher, (2003), Vapor-phase silylation of MCM-41 and Ti-MCM41. Micropor. Mesoporm Mater., 66: 53-67.

10.    T. Shahram, M. Majid, M. Valiollah, M. Iraj, and G. Kamal, (2009), Alkene epoxidation catalyzed by molybdenum supported on functionalized MCM41 containg N-S chelating Schiff base ligand. Catal. Comm., 10: 853-858

11.    S. Biz, M.L. Occelli, (1998), Synthesis and characterization of mesostructured materials. Catal. Rev. Sci. Eng., 40: 329.

12.    K.M. Parida, Dharitri Rath, S.S. Dash, (2010), Synthesis, characterization and catalytic activity of copper incorporated and immobilized mesoporous MCM-41 in the single step amination of benzene. J. Molec. Catal. A: Chem., 318: 85-93.

13.    S. Brunauer, L.S. Deming, W.S. Deming, E. Teller, (1940), On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 62 (7): 1723-1732.

14.    H. Sepehrian, A. R. Khanchi, M. K. Rafouei and S. Waqif Husain, (2006), Non-thermal synthesis of mesoporous zirconium silicate and its characterization. Journal of the Iran Chemical Society, Vol 3, No. 3, pp. 253-257.

15.    H. Yang, G. Zhang, X. Hong and Y. Zhu, (2004), Dicyano-functionalized MCM-41 anchored-palladium complexes as recoverable catalysts for Heck reaction. J. Mol. Cat. A., 210: 143-8.

16.    S. Endud, and K.L. Wong, (2007), “Mesoporous silica MCM48 molecular sieve modified with SnCl2 in alkaline medium for selective oxidation of alcohol,” Micropor. Mesopor. Mater., 101, pp.  256-263.

17.    E.M. Flanigen, H. Khatami, H.A. Szymanski, (1971), Infrared structural studies of zeolite frameworks. In: E.M. Flanigen, L.B. Sand (Eds.). Molecular Sieve Zeolites. ACS Adv. Chem. Ser., 101: pp 201-227.

18.    R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita, K. Ogura, (2000), High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B., 104: 12184.

19.    L. Chmielarz, P. Kustrowski, R. Dziembaj, P. Cool. E.F. Vansant, (2006), Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia. Appl. Catal. B: Env., 62: 369-380.

 

 

Previous                    Content                    Next