The
Malaysian Journal of Analytical Sciences Vol 16 No 1 (2012): 62 – 70
COPPER SUPPORTED ON FUNCTIONALISED MCM41 CONTAINING
THIOUREA LIGAND AS AN CATALYST IN OXIDATION OF CYCLOHEXENE WITH HYDROGEN
PEROXIDE
(Sokongan Kuprum kepada
MCM41 Terfungsi yang Mengandungi Ligan Tiourea Sebagai Pemangkin Terhadap Tindak
Balas Pengoksidaan Sikloheksena dengan Hidrogen Peroksida)
Amirah Ahmad1*, Hamizah Md. Rasid1 and Karimah Kassim2
1Faculty of Applied Sciences,
2Institute of Science,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
*Corresponding author: my_silberberg@yahoo.com
Abstract
MCM41
encapsulated with thiourea ligand and copper(II) acetate as catalyst for
oxidation reaction is reported. First, MCM41 was modified using
3-aminopropyltriethoxysilane (APTES) and then was encapsulated with thiouracil
and copper(II) acetate. The catalyst was characterized using X-Ray Diffraction (XRD), N2
adsorption, single point BET, Fourier Transform Infrared Spectroscopy (FTIR), Field
Emission Scanning Electron Microscopy (FESEM) and Elemental Analyzer. The
characterization results indicated that the catalyst has an ordered hexagonal
structure, a narrow pore size distribution, uniform mesopores and a high
surface area. Moreover, the results also revealed that thiourea ligand and
copper acetate might be encapsulated onto the pores of MCM41. Catalytic
activity of the catalyst was tested in the oxidation of cyclohexene using acetonitrile
as solvent and hydrogen peroxide as oxidant. The CuO2(acac)-Thio-APS-MCM41
was proven to be a good catalyst for oxidation reaction of cyclohexene with
conversion up to 96.1% after 24 h reaction and providing a high selectivity to 2-cyclohexene-1-one.
Keywords: MCM41, Thiourea Ligand, Mesoporous
Material, Thiouracil
References
2. L.I.
Simandi, (1991), Dioxygen activation and homogeneous catalytic oxidation. Elsevier., pp 57
3.
K.F.
Podraze, (1991) Organic building blocks of the chemical industry. Org. Prep. Proced. Int., 23, pp. 217
4.
J.T. Groves, K.V. Shalyaev, J. Lee, (1999), in:
K.M. Kadish (Ed.), The Porphyin Handbook. Vol. 4, Academic Press, San Diego,
CA, pp 17
5.
R.A. Sheldon, and J.K. Kochi, (2000),
Metal-catalyzed oxidations of organic compounds, Academic Press, New York,
1981: G.J.T. Brink, I.W.C.E Arends, R.A. Sheldon, Science 287, pp 1636
6.
J.H. Clark, (2001), Catalysis for green
chemistry. Pure Appl. Chem. 73, pp 103-111
7.
H. Nur, S. Ikeda and B. Ohtani*, (2000),
Phase-boundary catalysis: a new approach in alkene epoxidation with hydrogen
peroxide by zeolite loaded with alkylsilane-covered titanium oxide. Chem. Comm. pp 2235
8.
Eko Adi Prasetyanto and Sang-Eon Park, (2008), Catalytic
oxidation of cyclohexene with hydrogen peroxide over Cu(II)-Cyclam-SBA-16
catalyst. ngew. Bull. Korean Chem. Soc.,
Vol. 29, No. 5, pp. 1033-1037.
9.
R.S. Robert, A. Rafael, A.D. James, W.R.
Thatcher, (2003), Vapor-phase silylation of MCM-41 and Ti-MCM41. Micropor.
Mesoporm Mater., 66: 53-67.
10.
T. Shahram, M. Majid, M. Valiollah, M. Iraj, and
G. Kamal, (2009), Alkene epoxidation catalyzed by molybdenum supported on
functionalized MCM41 containg N-S chelating Schiff base ligand. Catal. Comm., 10: 853-858
11.
S. Biz, M.L. Occelli, (1998), Synthesis and
characterization of mesostructured materials. Catal. Rev. Sci. Eng., 40:
329.
12.
K.M. Parida, Dharitri Rath, S.S. Dash, (2010),
Synthesis, characterization and catalytic activity of copper incorporated and
immobilized mesoporous MCM-41 in the single step amination of benzene. J.
Molec. Catal. A: Chem., 318: 85-93.
13.
S. Brunauer, L.S. Deming, W.S. Deming, E.
Teller, (1940), On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 62 (7): 1723-1732.
14.
H. Sepehrian, A. R. Khanchi, M. K. Rafouei and
S. Waqif Husain, (2006), Non-thermal synthesis of mesoporous zirconium silicate
and its characterization. Journal of the
Iran Chemical Society, Vol 3, No. 3, pp. 253-257.
15.
H. Yang, G. Zhang, X. Hong and Y. Zhu, (2004),
Dicyano-functionalized MCM-41 anchored-palladium complexes as recoverable
catalysts for Heck reaction. J. Mol. Cat.
A., 210: 143-8.
16.
S. Endud, and K.L. Wong, (2007), “Mesoporous
silica MCM48 molecular sieve modified with SnCl2 in alkaline medium
for selective oxidation of alcohol,” Micropor.
Mesopor. Mater., 101, pp. 256-263.
17.
E.M. Flanigen, H. Khatami, H.A. Szymanski,
(1971), Infrared structural studies of zeolite frameworks. In: E.M. Flanigen,
L.B. Sand (Eds.). Molecular Sieve Zeolites. ACS Adv. Chem. Ser., 101: pp
201-227.
18.
R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita,
K. Ogura, (2000), High surface-area silica with controlled pore size prepared
from nanocomposite of silica and citric acid. J. Phys. Chem. B., 104:
12184.
19.
L. Chmielarz, P. Kustrowski, R. Dziembaj, P.
Cool. E.F. Vansant, (2006), Catalytic performance of various mesoporous silicas
modified with copper or iron oxides introduced by different ways in the
selective reduction of NO by ammonia. Appl. Catal. B: Env., 62: 369-380.